Holmes–Thompson volume

From HandWiki

In geometry of normed spaces, the Holmes–Thompson volume is a notion of volume that allows to compare sets contained in different normed spaces (of the same dimension). It was introduced by Raymond D. Holmes and Anthony Charles Thompson.[1]

Definition

The Holmes–Thompson volume [math]\displaystyle{ \operatorname{Vol}_\text{HT}(A) }[/math] of a measurable set [math]\displaystyle{ A\subseteq R^n }[/math] in a normed space [math]\displaystyle{ (\mathbb{R}^n,\|-\|) }[/math] is defined as the 2n-dimensional measure of the product set [math]\displaystyle{ A\times B^*, }[/math] where [math]\displaystyle{ B^* \subseteq \mathbb{R}^n }[/math] is the dual unit ball of [math]\displaystyle{ \|-\| }[/math] (the unit ball of the dual norm [math]\displaystyle{ \|-\|^* }[/math]).

Symplectic (coordinate-free) definition

The Holmes–Thompson volume can be defined without coordinates: if [math]\displaystyle{ A\subseteq V }[/math] is a measurable set in an n-dimensional real normed space [math]\displaystyle{ (V,\|-\|), }[/math] then its Holmes–Thompson volume is defined as the absolute value of the integral of the volume form [math]\displaystyle{ \frac 1{n!}\overbrace{\omega\wedge\cdots\wedge\omega}^n }[/math] over the set [math]\displaystyle{ A\times B^* }[/math],

[math]\displaystyle{ \operatorname{Vol}_{HT}(A)=\left|\int_{A\times B^*}\frac1{n!}\omega^n\right| }[/math]

where [math]\displaystyle{ \omega }[/math] is the standard symplectic form on the vector space [math]\displaystyle{ V\times V^* }[/math] and [math]\displaystyle{ B^*\subseteq V^* }[/math] is the dual unit ball of [math]\displaystyle{ \|-\| }[/math].

This definition is consistent with the previous one, because if each point [math]\displaystyle{ x\in V }[/math] is given linear coordinates [math]\displaystyle{ (x_i)_{0\leq i\lt n} }[/math] and each covector [math]\displaystyle{ \xi \in V^* }[/math] is given the dual coordinates [math]\displaystyle{ (xi_i)_{0\leq i\lt n} }[/math] (so that [math]\displaystyle{ \xi(x)=\sum_i \xi_i x_i }[/math]), then the standard symplectic form is [math]\displaystyle{ \omega=\sum_i \mathrm d x_i \wedge \mathrm d \xi_i }[/math], and the volume form is

[math]\displaystyle{ \frac 1{n!} \omega^n = \pm\; \mathrm d x_0 \wedge \dots \wedge \mathrm d x_{n-1} \wedge \mathrm d \xi_0 \wedge \dots \wedge \mathrm d \xi_{n-1}, }[/math]

whose integral over the set [math]\displaystyle{ A\times B^* \subseteq V\times V^* \cong \mathbb R^n \times \mathbb R^n }[/math] is just the usual volume of the set in the coordinate space [math]\displaystyle{ \mathbb R ^{2n} }[/math].

Volume in Finsler manifolds

More generally, the Holmes–Thompson volume of a measurable set [math]\displaystyle{ A }[/math] in a Finsler manifold [math]\displaystyle{ (M,F) }[/math] can be defined as

[math]\displaystyle{ \operatorname{Vol}_\text{HT}(A):=\int_{B^*A} \frac 1{n!} \omega ^n, }[/math]

where [math]\displaystyle{ B^*A=\{(x,p)\in \mathrm T^*M:\ x\in A\text{ and }\xi\in \mathrm T^*_xM\text{ with }\|\xi\|_x^*\leq 1\} }[/math] and [math]\displaystyle{ \omega }[/math] is the standard symplectic form on the cotangent bundle [math]\displaystyle{ \mathrm T^*M }[/math]. Holmes–Thompson's definition of volume is appropriate for establishing links between the total volume of a manifold and the length of the geodesics (shortest curves) contained in it (such as systolic inequalities[2][3] and filling volumes[4][5][6][7][8]) because, according to Liouville's theorem, the geodesic flow preserves the symplectic volume of sets in the cotangent bundle.

Computation using coordinates

If [math]\displaystyle{ M }[/math] is a region in coordinate space [math]\displaystyle{ \mathbb R^n }[/math], then the tangent and cotangent spaces at each point [math]\displaystyle{ x\in M }[/math] can both be identified with [math]\displaystyle{ \mathbb R^n }[/math]. The Finsler metric is a continuous function [math]\displaystyle{ F:TM=M\times\mathbb R^n \to [0,+\infty) }[/math] that yields a (possibly asymmetric) norm [math]\displaystyle{ F_x:v \in \mathbb R^n\mapsto \|v\|_x=F(x,v) }[/math] for each point [math]\displaystyle{ x\in M }[/math]. The Holmes–Thompson volume of a subset AM can be computed as

[math]\displaystyle{ \operatorname{Vol}_{\textrm{HT}}(A) = |B^*A| = \int_A |B^*_x| \,\mathrm d\operatorname{Vol_n}(x) }[/math]

where for each point [math]\displaystyle{ x\in M }[/math], the set [math]\displaystyle{ B^*_x \subseteq \mathbb R^n }[/math] is the dual unit ball of [math]\displaystyle{ F_x }[/math] (the unit ball of the dual norm [math]\displaystyle{ F_x^* = \|-\|_x^* }[/math]), the bars [math]\displaystyle{ |-| }[/math] denote the usual volume of a subset in coordinate space, and [math]\displaystyle{ \mathrm d\operatorname{Vol_n}(x) }[/math] is the product of all n coordinate differentials [math]\displaystyle{ \mathrm dx_i }[/math].

This formula follows, again, from the fact that the 2n-form [math]\displaystyle{ \textstyle{ \frac 1{n!} \omega ^n } }[/math] is equal (up to a sign) to the product of the differentials of all [math]\displaystyle{ n }[/math] coordinates [math]\displaystyle{ \mathrm x_i }[/math] and their dual coordinates [math]\displaystyle{ \xi_i }[/math]. The Holmes–Thompson volume of A is then equal to the usual volume of the subset [math]\displaystyle{ B^*A = \{(x,\xi)\in M\times \mathbb R^n : \xi\in B^*_x \} }[/math] of [math]\displaystyle{ \mathbb R^{2n} }[/math].

Santaló's formula

If [math]\displaystyle{ A }[/math] is a simple region in a Finsler manifold (that is, a region homeomorphic to a ball, with convex boundary and a unique geodesic along [math]\displaystyle{ A }[/math] joining each pair of points of [math]\displaystyle{ A }[/math]), then its Holmes–Thompson volume can be computed in terms of the path-length distance (along [math]\displaystyle{ A }[/math]) between the boundary points of [math]\displaystyle{ A }[/math] using Santaló's formula, which in turn is based on the fact that the geodesic flow on the cotangent bundle is Hamiltonian. [9]

Normalization and comparison with Euclidean and Hausdorff measure

The original authors used[1] a different normalization for Holmes–Thompson volume. They divided the value given here by the volume of the Euclidean n-ball, to make Holmes–Thompson volume coincide with the product measure in the standard Euclidean space [math]\displaystyle{ (\mathbb{R}^n,\|-\|_2) }[/math]. This article does not follow that convention.

If the Holmes–Thompson volume in normed spaces (or Finsler manifolds) is normalized, then it never exceeds the Hausdorff measure. This is a consequence of the Blaschke-Santaló inequality. The equality holds if and only if the space is Euclidean (or a Riemannian manifold).

References

Álvarez-Paiva, Juan-Carlos; Thompson, Anthony C. (2004). "Chapter 1: Volumes on Normed and Finsler Spaces". in Bao, David; Bryant, Robert L.; Chern, Shiing-Shen et al.. A sampler of Riemann-Finsler geometry. MSRI Publications. 50. Cambridge University Press. pp. 1–48. ISBN 0-521-83181-4. http://library.msri.org/books/Book50/files/02AT.pdf. 

  1. 1.0 1.1 Holmes, Raymond D.; Thompson, Anthony Charles (1979). "N-dimensional area and content in Minkowski spaces". Pacific J. Math. 85 (1): 77–110. doi:10.2140/pjm.1979.85.77. http://projecteuclid.org/euclid.pjm/1102784083. 
  2. Sabourau, Stéphane (2010). "Local extremality of the Calabi–Croke sphere for the length of the shortest closed geodesic". Journal of the London Mathematical Society 82 (3): 549–562. doi:10.1112/jlms/jdq045. 
  3. Álvarez Paiva, Juan-Carlos; Balacheff, Florent; Tzanev, Kroum (2016). "Isosystolic inequalities for optical hypersurfaces". Advances in Mathematics 301: 934–972. doi:10.1016/j.aim.2016.07.003. 
  4. Ivanov, Sergei V. (2010). "Volume Comparison via Boundary Distances". Proceedings of ICM. 
  5. Ivanov, Sergei V. (2001). "On two-dimensional minimal fillings" (in ru). Algebra i Analiz 13 (1): 26–38. 
  6. Ivanov, Sergei V. (2002). "On two-dimensional minimal fillings" (in en). St. Petersburg Math. J. 13 (1): 17–25. 
  7. Ivanov, Sergei V. (2011). "Filling minimality of Finslerian 2-discs". Proc. Steklov Inst. Math. 273 (1): 176–190. doi:10.1134/S0081543811040079. 
  8. Ivanov, Sergei V. (2013). "Local monotonicity of Riemannian and Finsler volume with respect to boundary distances". Geometriae Dedicata 164 (2013): 83–96. doi:10.1007/s10711-012-9760-y. 
  9. "Santaló formula". Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Santal%C3%B3_formula&oldid=23516.