Holmgren's uniqueness theorem
In the theory of partial differential equations, Holmgren's uniqueness theorem, or simply Holmgren's theorem, named after the Swedish mathematician Erik Albert Holmgren (1873–1943), is a uniqueness result for linear partial differential equations with real analytic coefficients.[1]
Simple form of Holmgren's theorem
We will use the multi-index notation: Let [math]\displaystyle{ \alpha=\{\alpha_1,\dots,\alpha_n\}\in \N_0^n, }[/math], with [math]\displaystyle{ \N_0 }[/math] standing for the nonnegative integers; denote [math]\displaystyle{ |\alpha|=\alpha_1+\cdots+\alpha_n }[/math] and
- [math]\displaystyle{ \partial_x^\alpha = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} }[/math].
Holmgren's theorem in its simpler form could be stated as follows:
- Assume that P = ∑|α| ≤m Aα(x)∂αx is an elliptic partial differential operator with real-analytic coefficients. If Pu is real-analytic in a connected open neighborhood Ω ⊂ Rn, then u is also real-analytic.
This statement, with "analytic" replaced by "smooth", is Hermann Weyl's classical lemma on elliptic regularity:[2]
- If P is an elliptic differential operator and Pu is smooth in Ω, then u is also smooth in Ω.
This statement can be proved using Sobolev spaces.
Classical form
Let [math]\displaystyle{ \Omega }[/math] be a connected open neighborhood in [math]\displaystyle{ \R^n }[/math], and let [math]\displaystyle{ \Sigma }[/math] be an analytic hypersurface in [math]\displaystyle{ \Omega }[/math], such that there are two open subsets [math]\displaystyle{ \Omega_{+} }[/math] and [math]\displaystyle{ \Omega_{-} }[/math] in [math]\displaystyle{ \Omega }[/math], nonempty and connected, not intersecting [math]\displaystyle{ \Sigma }[/math] nor each other, such that [math]\displaystyle{ \Omega=\Omega_{-}\cup\Sigma\cup\Omega_{+} }[/math].
Let [math]\displaystyle{ P=\sum_{|\alpha|\le m}A_\alpha(x)\partial_x^\alpha }[/math] be a differential operator with real-analytic coefficients.
Assume that the hypersurface [math]\displaystyle{ \Sigma }[/math] is noncharacteristic with respect to [math]\displaystyle{ P }[/math] at every one of its points:
- [math]\displaystyle{ \mathop{\rm Char}P\cap N^*\Sigma=\emptyset }[/math].
Above,
- [math]\displaystyle{ \mathop{\rm Char}P=\{(x,\xi)\subset T^*\R^n\backslash 0:\sigma_p(P)(x,\xi)=0\},\text{ with }\sigma_p(x,\xi)=\sum_{|\alpha|=m}i^{|\alpha|}A_\alpha(x)\xi^\alpha }[/math]
the principal symbol of [math]\displaystyle{ P }[/math]. [math]\displaystyle{ N^*\Sigma }[/math] is a conormal bundle to [math]\displaystyle{ \Sigma }[/math], defined as [math]\displaystyle{ N^*\Sigma=\{(x,\xi)\in T^*\R^n:x\in\Sigma,\,\xi|_{T_x\Sigma}=0\} }[/math].
The classical formulation of Holmgren's theorem is as follows:
- Holmgren's theorem
- Let [math]\displaystyle{ u }[/math] be a distribution in [math]\displaystyle{ \Omega }[/math] such that [math]\displaystyle{ Pu=0 }[/math] in [math]\displaystyle{ \Omega }[/math]. If [math]\displaystyle{ u }[/math] vanishes in [math]\displaystyle{ \Omega_{-} }[/math], then it vanishes in an open neighborhood of [math]\displaystyle{ \Sigma }[/math].[3]
Relation to the Cauchy–Kowalevski theorem
Consider the problem
- [math]\displaystyle{ \partial_t^m u=F(t,x,\partial_x^\alpha\,\partial_t^k u), \quad \alpha\in\N_0^n, \quad k\in\N_0, \quad |\alpha|+k\le m, \quad k\le m-1, }[/math]
with the Cauchy data
- [math]\displaystyle{ \partial_t^k u|_{t=0}=\phi_k(x), \qquad 0\le k\le m-1, }[/math]
Assume that [math]\displaystyle{ F(t,x,z) }[/math] is real-analytic with respect to all its arguments in the neighborhood of [math]\displaystyle{ t=0,x=0,z=0 }[/math] and that [math]\displaystyle{ \phi_k(x) }[/math] are real-analytic in the neighborhood of [math]\displaystyle{ x=0 }[/math].
- Theorem (Cauchy–Kowalevski)
- There is a unique real-analytic solution [math]\displaystyle{ u(t,x) }[/math] in the neighborhood of [math]\displaystyle{ (t,x)=(0,0)\in(\R\times\R^n) }[/math].
Note that the Cauchy–Kowalevski theorem does not exclude the existence of solutions which are not real-analytic.[citation needed]
On the other hand, in the case when [math]\displaystyle{ F(t,x,z) }[/math] is polynomial of order one in [math]\displaystyle{ z }[/math], so that
- [math]\displaystyle{ \partial_t^m u = F(t,x,\partial_x^\alpha\,\partial_t^k u) = \sum_{\alpha\in\N_0^n,0\le k\le m-1, |\alpha| + k\le m}A_{\alpha,k}(t,x) \, \partial_x^\alpha \, \partial_t^k u, }[/math]
Holmgren's theorem states that the solution [math]\displaystyle{ u }[/math] is real-analytic and hence, by the Cauchy–Kowalevski theorem, is unique.
See also
- Cauchy–Kowalevski theorem
- FBI transform
References
- ↑ Eric Holmgren, "Über Systeme von linearen partiellen Differentialgleichungen", Öfversigt af Kongl. Vetenskaps-Academien Förhandlinger, 58 (1901), 91–103.
- ↑ Stroock, W. (2008). "Weyl's lemma, one of many". Groups and analysis. London Math. Soc. Lecture Note Ser.. 354. Cambridge: Cambridge Univ. Press. pp. 164–173.
- ↑ François Treves, "Introduction to pseudodifferential and Fourier integral operators", vol. 1, Plenum Press, New York, 1980.
Original source: https://en.wikipedia.org/wiki/Holmgren's uniqueness theorem.
Read more |