Hrushovski construction
In model theory, a branch of mathematical logic, the Hrushovski construction generalizes the Fraïssé limit by working with a notion of strong substructure [math]\displaystyle{ \leq }[/math] rather than [math]\displaystyle{ \subseteq }[/math]. It can be thought of as a kind of "model-theoretic forcing", where a (usually) stable structure is created, called the generic or rich [1] model. The specifics of [math]\displaystyle{ \leq }[/math] determine various properties of the generic, with its geometric properties being of particular interest. It was initially used by Ehud Hrushovski to generate a stable structure with an "exotic" geometry, thereby refuting Zil'ber's Conjecture.
Three conjectures
The initial applications of the Hrushovski construction refuted two conjectures and answered a third question in the negative. Specifically, we have:
- Lachlan's Conjecture. Any stable [math]\displaystyle{ \aleph_0 }[/math]-categorical theory is totally transcendental.[2]
- Zil'ber's Conjecture. Any uncountably categorical theory is either locally modular or interprets an algebraically closed field.[3]
- Cherlin's Question. Is there a maximal (with respect to expansions) strongly minimal set?
The construction
Let L be a finite relational language. Fix C a class of finite L-structures which are closed under isomorphisms and substructures. We want to strengthen the notion of substructure; let [math]\displaystyle{ \leq }[/math] be a relation on pairs from C satisfying:
- [math]\displaystyle{ A \leq B }[/math] implies [math]\displaystyle{ A \subseteq B. }[/math]
- [math]\displaystyle{ A \subseteq B \subseteq C }[/math] and [math]\displaystyle{ A \leq C }[/math] implies [math]\displaystyle{ A \leq B }[/math]
- [math]\displaystyle{ \varnothing \leq A }[/math] for all [math]\displaystyle{ A \in \mathbf{C}. }[/math]
- [math]\displaystyle{ A \leq B }[/math] implies [math]\displaystyle{ A \cap C \leq B \cap C }[/math] for all [math]\displaystyle{ C \in \mathbf{C}. }[/math]
- If [math]\displaystyle{ f\colon A \to A' }[/math] is an isomorphism and [math]\displaystyle{ A \leq B }[/math], then [math]\displaystyle{ f }[/math] extends to an isomorphism [math]\displaystyle{ B \to B' }[/math] for some superset of [math]\displaystyle{ B }[/math] with [math]\displaystyle{ A' \leq B'. }[/math]
Definition. An embedding [math]\displaystyle{ f: A \hookrightarrow D }[/math] is strong if [math]\displaystyle{ f(A) \leq D. }[/math]
Definition. The pair [math]\displaystyle{ (\mathbf{C}, \leq) }[/math] has the amalgamation property if [math]\displaystyle{ A \leq B_1, B_2 }[/math] then there is a [math]\displaystyle{ D \in \mathbf{C} }[/math] so that each [math]\displaystyle{ B_i }[/math] embeds strongly into [math]\displaystyle{ D }[/math] with the same image for [math]\displaystyle{ A. }[/math]
Definition. For infinite [math]\displaystyle{ D }[/math] and [math]\displaystyle{ A \in \mathbf{C}, }[/math] we say [math]\displaystyle{ A \leq D }[/math] iff [math]\displaystyle{ A \leq X }[/math] for [math]\displaystyle{ A \subseteq X \subseteq D, X \in \mathbf{C}. }[/math]
Definition. For any [math]\displaystyle{ A \subseteq D, }[/math] the closure of [math]\displaystyle{ A }[/math] in [math]\displaystyle{ D, }[/math] denoted by [math]\displaystyle{ \operatorname{cl}_D(A), }[/math] is the smallest superset of [math]\displaystyle{ A }[/math] satisfying [math]\displaystyle{ \operatorname{cl}(A) \leq D. }[/math]
Definition. A countable structure [math]\displaystyle{ G }[/math] is [math]\displaystyle{ (\mathbf{C}, \leq) }[/math]-generic if:
- For [math]\displaystyle{ A \subseteq_\omega G, A \in \mathbf{C}. }[/math]
- For [math]\displaystyle{ A \leq G, }[/math] if [math]\displaystyle{ A \leq B }[/math] then there is a strong embedding of [math]\displaystyle{ B }[/math] into [math]\displaystyle{ G }[/math] over [math]\displaystyle{ A. }[/math]
- [math]\displaystyle{ G }[/math] has finite closures: for every [math]\displaystyle{ A \subseteq_\omega G, \operatorname{cl}_G(A) }[/math] is finite.
Theorem. If [math]\displaystyle{ (\mathbf{C},\leq) }[/math] has the amalgamation property, then there is a unique [math]\displaystyle{ (\mathbf{C},\leq) }[/math]-generic.
The existence proof proceeds in imitation of the existence proof for Fraïssé limits. The uniqueness proof comes from an easy back and forth argument.
References
- ↑ Slides on Hrushovski construction from Frank Wagner
- ↑ E. Hrushovski. A stable [math]\displaystyle{ \aleph_0 }[/math]-categorical pseudoplane. Preprint, 1988
- ↑ E. Hrushovski. A new strongly minimal set. Annals of Pure and Applied Logic, 52:147–166, 1993
Original source: https://en.wikipedia.org/wiki/Hrushovski construction.
Read more |