Hyperstability
From HandWiki
In stability theory, hyperstability is a property of a system that requires the state vector to remain bounded if the inputs are restricted to belonging to a subset of the set of all possible inputs.[1] Definition:[2] A system is hyperstable if there are two constants [math]\displaystyle{ k_1 \ge 0, k_2 \ge 0 }[/math] such that any state trajectory of the system satisfies the inequality:
- [math]\displaystyle{ \| x(t) \| \lt k_1 \|x(0)\| + k_2, \, \forall t \ge 0 }[/math]
References
See also
Original source: https://en.wikipedia.org/wiki/Hyperstability.
Read more |