Invariant decomposition

From HandWiki
Short description: Concept in group theory (mathematics)

The invariant decomposition is a decomposition of the elements of pin groups [math]\displaystyle{ \text{Pin}(p,q,r) }[/math] into orthogonal commuting elements. It is also valid in their subgroups, e.g. orthogonal, pseudo-Euclidean, conformal, and classical groups. Because the elements of Pin groups are the composition of [math]\displaystyle{ k }[/math] oriented reflections, the invariant decomposition theorem reads

Every [math]\displaystyle{ k }[/math]-reflection can be decomposed into [math]\displaystyle{ \lceil k/2 \rceil }[/math] commuting factors.[1]

It is named the invariant decomposition because these factors are the invariants of the [math]\displaystyle{ k }[/math]-reflection [math]\displaystyle{ R \in \text{Pin}(p,q,r) }[/math]. A well known special case is the Chasles' theorem, which states that any rigid body motion in [math]\displaystyle{ \text{SE}(3) }[/math] can be decomposed into a rotation around, followed or preceded by a translation along, a single line. Both the rotation and the translation leave two lines invariant: the axis of rotation and the orthogonal axis of translation. Since both rotations and translations are bireflections, a more abstract statement of the theorem reads "Every quadreflection can be decomposed into commuting bireflections". In this form the statement is also valid for e.g. the spacetime algebra [math]\displaystyle{ \text{SO}(3,1) }[/math], where any Lorentz transformation can be decomposed into a commuting rotation and boost.

Bivector decomposition

Any bivector [math]\displaystyle{ F }[/math] in the geometric algebra [math]\displaystyle{ \mathbb{R}_{p,q,r} }[/math] of total dimension [math]\displaystyle{ n = p+q+r }[/math] can be decomposed into [math]\displaystyle{ k = \lfloor n / 2 \rfloor }[/math] orthogonal commuting simple bivectors that satisfy

[math]\displaystyle{ F = F_1 + F_2 \ldots + F_{k}. }[/math]

Defining [math]\displaystyle{ \lambda_i := F_i^2 \in \mathbb{C} }[/math], their properties can be summarized as [math]\displaystyle{ F_i F_j = \delta_{ij} \lambda_i + F_i \wedge F_j }[/math] (no sum). The [math]\displaystyle{ F_i }[/math] are then found as solutions to the characteristic polynomial

[math]\displaystyle{ 0 = (F_1 - F_i) (F_2 - F_i) \cdots (F_k - F_i). }[/math]

Defining

[math]\displaystyle{ W_{m} = \frac{1}{m!}\langle F^{m}\rangle_{2 m} = \frac{1}{m!}\, \underbrace{F \wedge F \wedge \ldots \wedge F}_{m\ \text{times}} }[/math]and [math]\displaystyle{ r = \lfloor k/2 \rfloor }[/math], the solutions are given by

[math]\displaystyle{ F_i = \begin{cases} \dfrac{\lambda_i^{r} W_0 + \lambda_i^{r-1} W_2 + \ldots + W_k}{\lambda_i^{r-1} W_1 + \lambda_i^{r-2} W_3 + \ldots + W_{k-1}} \quad & k \text{ even}, \\[10mu] \dfrac{\lambda_i^{r} W_1 + \lambda_i^{r-1} W_3 + \ldots + W_k}{\lambda_i^{r} W_0 + \lambda_i^{r-1} W_2 + \ldots + W_{k-1}} & k \text{ odd}. \end{cases} }[/math]

The values of [math]\displaystyle{ \lambda_i }[/math] are subsequently found by squaring this expression and rearranging, which yields the polynomial

[math]\displaystyle{ \begin{aligned} 0 &= \sum_{m=0}^{k} \langle W_{m}^2 \rangle_0 (- \lambda_i)^{k-m} \\[5mu] &= (F_1^2 - \lambda_i) (F_2^2 - \lambda_i) \cdots (F_k^2 - \lambda_i). \end{aligned} }[/math]

By allowing complex values for [math]\displaystyle{ \lambda_i }[/math], the counter example of Marcel Riesz can in fact be solved.[1] This closed form solution for the invariant decomposition is only valid for eigenvalues [math]\displaystyle{ \lambda_i }[/math] with algebraic multiplicity of 1. For degenerate [math]\displaystyle{ \lambda_i }[/math] the invariant decomposition still exists, but cannot be found using the closed form solution.

Exponential map

A [math]\displaystyle{ 2k }[/math]-reflection [math]\displaystyle{ R \in \text{Spin}(p,q,r) }[/math] can be written as [math]\displaystyle{ R = \exp(F) }[/math] where [math]\displaystyle{ F \in \mathfrak{spin}(p,q,r) }[/math] is a bivector, and thus permits a factorization

[math]\displaystyle{ R = e^F = e^{F_1} e^{F_2} \cdots e^{F_k}. }[/math]

The invariant decomposition therefore gives a closed form formula for exponentials, since each [math]\displaystyle{ F_i }[/math] squares to a scalar and thus follows Euler's formula:

[math]\displaystyle{ R_i = e^{F_i} = {\cosh}\bigl(\sqrt{\lambda_i}\bigr) + \frac{{\sinh}\bigl(\sqrt{\lambda_i}\bigr)}{\sqrt{\lambda_i}} F_i. }[/math]

Carefully evaluating the limit [math]\displaystyle{ \lambda_i \to 0 }[/math] gives

[math]\displaystyle{ R_i = e^{F_i} = 1 + F_i, }[/math]

and thus translations are also included.

Rotor factorization

Given a [math]\displaystyle{ 2k }[/math]-reflection [math]\displaystyle{ R \in \text{Spin}(p,q,r) }[/math] we would like to find the factorization into [math]\displaystyle{ R_i = \exp(F_i) }[/math]. Defining the simple bivector

[math]\displaystyle{ t(F_i) := \frac{{\tanh}\bigl(\sqrt{\lambda_i}\bigr)}{\sqrt{\lambda_i}} F_i, }[/math]

where [math]\displaystyle{ \lambda_i = F_i^2 }[/math]. These bivectors can be found directly using the above solution for bivectors by substituting[1]

[math]\displaystyle{ W_m = \langle R \rangle_{2m} \big/ \langle R \rangle_0 }[/math]

where [math]\displaystyle{ \langle R \rangle_{2m} }[/math] selects the grade [math]\displaystyle{ 2m }[/math] part of [math]\displaystyle{ R }[/math]. After the bivectors [math]\displaystyle{ t(F_i) }[/math] have been found, [math]\displaystyle{ R_i }[/math] is found straightforwardly as

[math]\displaystyle{ R_i = \frac{1 + t(F_i)}{\sqrt{1 - t(F_i)^2}}. }[/math]

Principal logarithm

After the decomposition of [math]\displaystyle{ R \in \text{Spin}(p,q,r) }[/math] into [math]\displaystyle{ R_i = \exp(F_i) }[/math] has been found, the principal logarithm of each simple rotor is given by

[math]\displaystyle{ F_i = \text{Log}(R_i) = \begin{cases} \dfrac{\langle R_i \rangle_2 }{\textstyle \sqrt{\langle R_i \rangle\vphantom)_2^2}} \;\text{arccosh}(\langle R_i \rangle) \quad & \lambda_i^2 \neq 0, \\[5mu] \langle R_i \rangle_2 & \lambda_i^2 = 0. \end{cases} }[/math]

and thus the logarithm of [math]\displaystyle{ R }[/math] is given by

[math]\displaystyle{ \text{Log}(R) = \sum_{i=1}^k \text{Log}(R_i). }[/math]

General Pin group elements

So far we have only considered elements of [math]\displaystyle{ \text{Spin}(p,q,r) }[/math], which are [math]\displaystyle{ 2k }[/math]-reflections. To extend the invariant decomposition to a [math]\displaystyle{ (2k+1) }[/math]-reflections [math]\displaystyle{ P \in \text{Pin}(p,q,r) }[/math], we use that the vector part [math]\displaystyle{ r = \langle P \rangle_1 }[/math] is a reflection which already commutes with, and is orthogonal to, the [math]\displaystyle{ 2k }[/math]-reflection [math]\displaystyle{ R = r^{-1} P = P r^{-1} }[/math]. The problem then reduces to finding the decomposition of [math]\displaystyle{ R }[/math] using the method described above.

Invariant bivectors

The bivectors [math]\displaystyle{ F_i }[/math] are invariants of the corresponding [math]\displaystyle{ R \in \text{Spin}(p,q,r) }[/math] since they commute with it, and thus under group conjugation

[math]\displaystyle{ R F_i R^{-1} = F_i. }[/math]

Going back to the example of Chasles' theorem as given in the introduction, the screw motion in 3D leaves invariant the two lines [math]\displaystyle{ F_1 }[/math] and [math]\displaystyle{ F_2 }[/math], which correspond to the axis of rotation and the orthogonal axis of translation on the horizon. While the entire space undergoes a screw motion, these two axes remain unchanged by it.

History

The invariant decomposition finds its roots in a statement made by Marcel Riesz about bivectors[2]:

Can any bivector [math]\displaystyle{ F }[/math] be decomposed into the direct sum of mutually orthogonal simple bivectors?

Mathematically, this would mean that for a given bivector [math]\displaystyle{ F }[/math] in an [math]\displaystyle{ n }[/math] dimensional geometric algebra, it should be possible to find a maximum of [math]\displaystyle{ k = \lfloor n/2 \rfloor }[/math] bivectors [math]\displaystyle{ F_i }[/math], such that [math]\displaystyle{ F = \sum_{i=1}^{\lfloor n/2 \rfloor} F_i }[/math], where the [math]\displaystyle{ F_i }[/math] satisfy [math]\displaystyle{ F_i \cdot F_j = [F_i, F_j] = 0 }[/math] and should square to a scalar [math]\displaystyle{ \lambda_i := F_i^2 \in \mathbb{R} }[/math]. Marcel Riesz gave some examples which lead to this conjecture, but also one (seeming) counter example. A first more general solution to the conjecture in geometric algebras [math]\displaystyle{ \mathbb{R}_{n,0,0} }[/math] was given by David Hestenes and Garret Sobczyck.[3] However, this solution was limited to purely Euclidean spaces. In 2011 the solution in [math]\displaystyle{ \mathbb{R}_{4,1,0} }[/math] (3DCGA) was published by Leo Dorst and Robert Jan Valkenburg, and was the first solution in a Lorentzian signature.[4] Also in 2011, Charles Gunn was the first to give a solution in the degenerate metric [math]\displaystyle{ \mathbb{R}_{3,0,1} }[/math].[5] This offered a first glimpse that the principle might be metric independent. Then, in 2021, the full metric and dimension independent closed form solution was given by Martin Roelfs in his PhD thesis.[6] And because bivectors in a geometric algebra [math]\displaystyle{ \mathbb{R}_{p,q,r} }[/math] form the Lie algebra [math]\displaystyle{ \mathfrak{spin}(p,q,r) }[/math], the thesis was also the first to use this to decompose elements of [math]\displaystyle{ \text{Spin}(p,q,r) }[/math] groups into orthogonal commuting factors which each follow Euler's formula, and to present closed form exponential and logarithmic functions for these groups. Subsequently in a paper by Martin Roelfs and Steven De Keninck the invariant decomposition was extended to include elements of [math]\displaystyle{ \text{Pin}(p,q,r) }[/math], not just [math]\displaystyle{ \text{Spin}(p,q,r) }[/math], and the direct decomposition of elements of [math]\displaystyle{ \text{Spin}(p,q,r) }[/math] without having to pass through [math]\displaystyle{ \mathfrak{spin}(p,q,r) }[/math] was found.[1]

References

  1. 1.0 1.1 1.2 1.3 Roelfs, Martin; De Keninck, Steven. "Graded Symmetry Groups: Plane and Simple". https://www.researchgate.net/publication/353116859. 
  2. Riesz, Marcel (1993) (in en-gb). Clifford Numbers and Spinors. doi:10.1007/978-94-017-1047-3. ISBN 978-90-481-4279-8. https://doi.org/10.1007/978-94-017-1047-3. 
  3. Hestenes, David (1984). Clifford algebra to geometric calculus: a unified language for mathematics and physics. Garret Sobczyk. Dordrecht: D. Reidel. ISBN 90-277-1673-0. OCLC 10726931. https://www.worldcat.org/oclc/10726931. 
  4. Dorst, Leo; Valkenburg, Robert (2011), Dorst, Leo; Lasenby, Joan, eds., "Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition" (in en), Guide to Geometric Algebra in Practice (London: Springer London): pp. 81–104, doi:10.1007/978-0-85729-811-9_5, ISBN 978-0-85729-810-2, http://link.springer.com/10.1007/978-0-85729-811-9_5, retrieved 2021-11-13 
  5. Gunn, Charles (19 December 2011). Geometry, Kinematics, and Rigid Body Mechanics in Cayley-Klein Geometries (Thesis). Technische Universität Berlin. doi:10.14279/DEPOSITONCE-3058.
  6. Roelfs, Martin (2021). Spectroscopic and Geometric Algebra Methods for Lattice Gauge Theory (Thesis). doi:10.13140/RG.2.2.23224.67848.