Inverse hyperbolic functions

From HandWiki



Functions inverse to the hyperbolic functions. The inverse hyperbolic functions are the inverse hyperbolic sine, cosine and tangent: $ \sinh ^ {-1} x $, $ \cosh ^ {-1} x $, $ \mathop{\rm tanh} ^ {-1} x $; other notations are: $ { \mathop{\rm arg} \sinh } x $, $ { \mathop{\rm arg} \cosh } x $, $ { \mathop{\rm arg} \mathop{\rm tanh} } x $.

The inverse hyperbolic functions of a real variable $ x $ are defined by the formulas

$$ \sinh ^ {-1} x = \

\mathop{\rm ln} ( x + \sqrt {x  ^ {2} + 1 } ) ,\ \ 

- \infty < x < + \infty , $$

$$ \cosh ^ {-1} x = \ \pm \mathop{\rm ln} ( x + \sqrt {x ^ {2} - 1 } ) ,\ \ x \geq 1 , $$

$$

\mathop{\rm tanh}  ^ {-1}  x  =  

\frac{1}{2}

  \mathop{\rm ln}  

\frac{1 + x }{1 - x }

,\  | x | < 1 .

$$

The inverse hyperbolic functions are single-valued and continuous at each point of their domain of definition, except for $ \cosh ^ {-1} x $, which is two-valued. In studying the properties of the inverse hyperbolic functions, one of the continuous branches of $ \cosh ^ {-1} x $ is chosen, that is, in the formula above only one sign is taken (usually plus). For the graphs of these functions see the figure.

<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i052370a.gif" />

Figure: i052370a

There a number of relations between the inverse hyperbolic functions. For example,

$$ \sinh ^ {-1} x = \

\mathop{\rm tanh}  ^ {-1} \ 

\frac{x}{\sqrt {x ^ {2} + 1 } }

,\ \ 
\mathop{\rm tanh}  ^ {-1}  x  = \ 

\sinh ^ {-1} \

\frac{x}{\sqrt {1 - x ^ {2} } }

.

$$

The derivatives of the inverse hyperbolic functions are given by the formulas

$$ ( \sinh ^ {-1} x ) ^ \prime = \

\frac{1}{\sqrt {x ^ {2} + 1 } }

,\ \ 

( \cosh ^ {-1} x ) ^ \prime = \pm

\frac{1}{\sqrt {x ^ {2} - 1 } }

,

$$

$$ ( \mathop{\rm tanh} ^ {-1} x ) ^ \prime = \frac{1}{ {1 - x ^ {2} } }

.

$$

The inverse hyperbolic functions of a complex variable $ z $ are defined by the same formulas as those for a real variable $ x $, where $ \mathop{\rm ln} z $ is understood to be the many-valued logarithmic function. The inverse hyperbolic functions of a complex variable are the analytic continuations to the complex plane of the corresponding functions of a real variable.

The inverse hyperbolic functions can be expressed in terms of the inverse trigonometric functions by the formulas

$$ \sinh ^ {-1} z = - i { \mathop{\rm arc} \sin } i z , $$

$$ \cosh ^ {-1} z = i { \mathop{\rm arc} \cos } z , $$

$$

\mathop{\rm tanh}  ^ {-1}  z  =  - i  { \mathop{\rm arc}   \mathop{\rm tan} }  i z .

$$

Comments

The notations $ { \mathop{\rm arc} \sinh } x $, $ { \mathop{\rm arc} \cosh } x $ and $ { \mathop{\rm arc} \mathop{\rm tanh} } x $ are also quite common.

References

[a1] M.R. Spiegel, "Complex variables" , Schaum's Outline Series , McGraw-Hill (1974)
[a2] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1972)