Isbell's zigzag theorem
Isbell's zigzag theorem, a theorem of abstract algebra characterizing the notion of a dominion, was introduced by American mathematician John R. Isbell in 1966.[1] Dominion is a concept in semigroup theory, within the study of the properties of epimorphisms. For example, let U is a subsemigroup of S containing U, the inclusion map [math]\displaystyle{ U \hookrightarrow S }[/math] is an epimorphism if and only if [math]\displaystyle{ \rm{Dom}_S (U) = S }[/math], furthermore, a map [math]\displaystyle{ \alpha \colon S \to T }[/math] is an epimorphism if and only if [math]\displaystyle{ \rm{Dom}_T (\rm{im} \; \alpha) = T }[/math].[2] The categories of rings and semigroups are examples of categories with non-surjective epimorphism, and the Zig-zag theorem gives necessary and sufficient conditions for determining whether or not a given morphism is epi.[3] Proofs of this theorem are topological in nature, beginning with (Isbell 1966) for semigroups, and continuing by (Philip 1974), completing Isbell's original proof.[3][4][5] The pure algebraic proofs were given by (Howie 1976) and (Storrer 1976).[3][4][note 1]
Statement
Zig-zag
Zig-zag:[7][2][8][9][10][note 2] If U is a submonoid of a monoid (or a subsemigroup of a semigroup) S, then a system of equalities;
[math]\displaystyle{ \begin{align} d &= x_1 u_1, &u_1 &= v_1 y_1 \\ x_{i - 1} v_{i - 1} &= x_i u_i, &u_i y_{i - 1} &= v_i y_i \; (i = 2, \dots, m) \\ x_{m} v_{m} &= u_{m+1}, &u_{m + 1} y_{m} &= d \end{align} }[/math]
in which [math]\displaystyle{ u_1, \dots , u_{m + 1}, v_1, \dots , v_{m} \in U }[/math] and [math]\displaystyle{ x_1, \dots , x_{m}, y_1, \dots , y_{m} \in S }[/math], is called a zig-zag of length m in S over U with value d. By the spine of the zig-zag we mean the ordered (2m + 1)-tuple [math]\displaystyle{ (u_1,v_1,u_2,v_2,\dots,u_{m},v_{m}, u_{m+1}) }[/math].
Dominion
Dominion:[5][6] Let U be a submonoid of a monoid (or a subsemigroup of a semigroup) S. The dominion [math]\displaystyle{ \rm{Dom}_S (U) }[/math] is the set of all elements [math]\displaystyle{ s \in S }[/math] such that, for all homomorphisms [math]\displaystyle{ f, g : S \to T }[/math] coinciding on U, [math]\displaystyle{ f(s) = g(s) }[/math].
We call a subsemigroup U of a semigroup U closed if [math]\displaystyle{ \rm{Dom}_S (U) = U }[/math], and dense if [math]\displaystyle{ \rm{Dom}_S (U) = S }[/math].[2][12]
Isbell's zigzag theorem
Isbell's zigzag theorem:[13]
If U is a submonoid of a monoid S then [math]\displaystyle{ d \in \rm{Dom}_S (U) }[/math] if and only if either [math]\displaystyle{ d \in U }[/math] or there exists a zig-zag in S over U with value d that is, there is a sequence of factorizations of d of the form
[math]\displaystyle{ d = x_1 u_1=x_1 v_1 y_1 = x_2 u_2 y_1 = x_2 v_2 y_2 = \cdots = x_{m} v_{m} y_{m} = u_{m+1} y_{m} }[/math]
This statement also holds for semigroups.[7][14][9][4][10]
For monoids, this theorem can be written more concisely:[15][2][16]
Let S be a monoid, let U be a submonoid of S, and let [math]\displaystyle{ d \in S }[/math]. Then [math]\displaystyle{ d \in \mathrm{Dom}_{S} (U) }[/math] if and only if [math]\displaystyle{ d \otimes 1 = 1 \otimes d }[/math] in the tensor product [math]\displaystyle{ S \otimes_{U} S }[/math].
Application
- Let U be a commutative subsemigroup of a semigroup S. Then [math]\displaystyle{ \rm{Dom}_S (U) }[/math] is commutative.[10]
- Every epimorphism [math]\displaystyle{ \alpha \colon S \to T }[/math] from a finite commutative semigroup S to another semigroup T is surjective.[10]
- Inverse semigroups are absolutely closed.[7]
- Example of non-surjective epimorphism in the category of rings:[3] The inclusion [math]\displaystyle{ i: (\mathbb{Z},\cdot)\hookrightarrow (\mathbb{Q},\cdot) }[/math] is an epimorphism in the category of all rings and ring homomorphisms by proving that any pair of ring homomorphisms [math]\displaystyle{ \beta, \gamma: \mathbb{Q} \to \mathbb{R} }[/math] which agree on [math]\displaystyle{ \mathbb{Z} }[/math] are fact equal.
A proof sketch for example of non-surjective epimorphism in the category of rings by using zig-zag
|
---|
We show that: Let [math]\displaystyle{ \beta, \gamma }[/math] to be ring homomorphisms, and [math]\displaystyle{ n,m \in \mathbb{Z} }[/math], [math]\displaystyle{ n \neq 0 }[/math]. When [math]\displaystyle{ \beta(m) = \gamma(m) }[/math] for all [math]\displaystyle{ m \in \mathbb{Z} }[/math], then [math]\displaystyle{ \beta\left(\frac{m}{n}\right) = \gamma\left(\frac{m}{n}\right) }[/math] for all [math]\displaystyle{ \frac{m}{n} \in \mathbb{Q} }[/math]. [math]\displaystyle{ \begin{align} \beta\left(\frac{m}{n}\right) &=\beta\left(\frac{1}{n} \cdot m \right) = \beta\left(\frac{1}{n}\right)\cdot \beta(m)\\ &= \beta\left(\frac{1}{n}\right)\cdot \gamma(m) = \beta\left(\frac{1}{n}\right)\cdot \gamma \left(mn \cdot \frac{1}{n} \right)\\ &= \beta\left(\frac{1}{n}\right)\cdot \gamma(mn) \cdot \gamma\left(\frac{1}{n}\right) = \beta\left(\frac{1}{n}\right) \cdot \beta(mn)\cdot \gamma\left(\frac{1}{n}\right)\\ &= \beta\left(\frac{1}{n} \cdot mn \right)\cdot \gamma \left(\frac{1}{n} \right) = \beta(m )\cdot \gamma\left(\frac{1}{n}\right) = \gamma(m) \cdot \gamma\left(\frac{1}{n}\right)\\ &= \gamma \left(m \cdot \frac{1}{n}\right) = \gamma \left(\frac{m}{n}\right), \end{align} }[/math] as required. |
See also
References
Citations
- ↑ (Isbell 1966)
- ↑ 2.0 2.1 2.2 2.3 (Howie 1996)
- ↑ 3.0 3.1 3.2 3.3 (Higgins 1988)
- ↑ 4.0 4.1 4.2 4.3 (Higgins 1990)
- ↑ 5.0 5.1 5.2 (Hoffman 2008)
- ↑ 6.0 6.1 (Storrer 1976)
- ↑ 7.0 7.1 7.2 (Howie Isbell)
- ↑ (Hall 1982)
- ↑ 9.0 9.1 (Higgins 1986)
- ↑ 10.0 10.1 10.2 10.3 (Higgins 2016)
- ↑ (Mitchell 1972)
- ↑ (Higgins 1983)
- ↑ (Howie 1996)
- ↑ (Higgins 1985)
- ↑ (Stenström 1971)
- ↑ (Renshaw 2002)
Bibliography
- Higgins, P. M. (1981). "Epis are onto for generalized inverse semigroups". Semigroup Forum 23: 255–260. doi:10.1007/BF02676649. http://eudml.org/doc/134518. Retrieved 2023-08-20.
- Higgins, P. M. (1983). "The determination of all varieties consisting of absolutely closed semigroups". Proceedings of the American Mathematical Society 87 (3): 419–421. doi:10.1090/S0002-9939-1983-0684630-8.
- Higgins, Peter M. (1986). "Completely semisimple semigroups and epimorphisms". Proceedings of the American Mathematical Society 96 (3): 387–390. doi:10.1090/S0002-9939-1986-0822424-3.
- Higgins, Peter M. (1988). "Epimorphisms and amalgams". Colloquium Mathematicum 56: 1–17. doi:10.4064/cm-56-1-1-17. http://eudml.org/doc/266906. Retrieved 2023-07-29.
- Higgins, Peter M. (1990). "A short proof of Isbell's zigzag theorem". Pacific Journal of Mathematics 144 (1): 47–50. doi:10.2140/pjm.1990.144.47.
- Higgins, Peter M. (2016). "Ramsey's theorem in algebraic semigroup". First International Tainan-Moscow Algebra Workshop: Proceedings of the International Conference held at National Cheng Kung University Tainan, Taiwan, Republic of China, July 23–August 22, 1994. Walter de Gruyter GmbH & Co KG. ISBN 9783110883220. https://books.google.com/books?id=WZdsDwAAQBAJ&pg=PA24. Retrieved August 13, 2023.
- Hall, T. E. (1982). "Epimorphisms and dominions". Semigroup Forum 24: 271–284. doi:10.1007/BF02572773. http://eudml.org/doc/134552. Retrieved 2023-08-10.
- Hall, T. E.; Jones, P. R. (1983). "Epis are onto for finite regular semigroups". Proceedings of the Edinburgh Mathematical Society 26 (2): 151–162. doi:10.1017/S0013091500016850.
- Isbell, John R. (1966). "Epimorphisms and Dominions". Proceedings of the Conference on Categorical Algebra. pp. 232–246. doi:10.1007/978-3-642-99902-4_9. ISBN 978-3-642-99904-8. https://books.google.com/books?id=rwX9CAAAQBAJ&pg=PA239. Retrieved 2023-07-26.[note 3]
- Howie, J.M; Isbell, J.R (1967). "Epimorphisms and dominions. II". Journal of Algebra 6: 7–21. doi:10.1016/0021-8693(67)90010-5.
- Howie, John M. (1976). An introduction to semigroup theory. L.M.S. Monographs; 7. Academic Press. ISBN 9780123569509.
- Howie, John M. (1996). "Isbell's zigzag theorem and its consequences". Semigroup Theory and its Applications. pp. 81–92. doi:10.1017/CBO9780511661877.007. ISBN 9780521576697. https://books.google.com/books?id=Hp1k-ROfeLEC&pg=PA81. Retrieved 2023-08-05.
- Isbell, John R. (1969). "Epimorphisms and Dominions. IV". Journal of the London Mathematical Society: 265–273. doi:10.1112/jlms/s2-1.1.265.
- Hoffman, Piotr (2008). "A Proof of Isbell's Zigzag Theorem". Journal of the Australian Mathematical Society 84 (2): 229–232. doi:10.1017/S1446788708000384.
- Mitchell, Barry (1972). "The Dominion of Isbell". Transactions of the American Mathematical Society 167: 319–331. doi:10.1090/S0002-9947-1972-0294441-0.
- Renshaw, James (2002). "On Free Products of Semigroups and a New Proof of Isbell's Zigzag Theorem". Journal of Algebra 251 (1): 12–15. doi:10.1006/jabr.2002.9143.
- Stenström, Bo (1971). "Flatness and localization over monoids". Mathematische Nachrichten 48 (1–6): 315–334. doi:10.1002/mana.19710480124.
- Storrer, H. (1976). "An algebraic proof of Isbell' s zigzag theorem". Semigroup Forum 12: 83–88. doi:10.1007/BF02195912. http://eudml.org/doc/134160. Retrieved 2023-07-31.
Further reading
- Alam, Noor; Higgins, Peter M.; Khan, Noor Mohammad (2020). "Epimorphisms, dominions and [math]\displaystyle{ \mathcal{H} }[/math]-commutative semigroups". Semigroup Forum 100 (2): 349–363. doi:10.1007/s00233-019-10050-z.
- Ahanger, Shabir Ahmad; Shah, Aftab Hussain (2020). "Epimorphisms, dominions and varieties of bands". Semigroup Forum 100 (3): 641–650. doi:10.1007/s00233-019-10047-8.
- Khan, N. M. (1985). "On saturated permutative varieties and consequences of permutation identities". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 38 (2): 186–197. doi:10.1017/S1446788700023041.
- Isbell, John R. (1968). "Epimorphisms and Dominions, III". American Journal of Mathematics 90 (4): 1025–1030. doi:10.2307/2373286. https://www.jstor.org/stable/2373286.
- Isbell, J. R. (1973). "Epimorphisms and dominions, V". Algebra Universalis 3 (1): 318–320. doi:10.1007/BF02945133.
- Scheiblich, E. (1976). "On epics and dominions of bands". Semigroup Forum 13 (1): 103–114. doi:10.1007/BF02194926. http://eudml.org/doc/134201.
- Philip, J.M (1974). "A proof of Isbell's zig-zag theorem". Journal of Algebra 32 (2): 328–331. doi:10.1016/0021-8693(74)90141-0.
- Higgins, Peter M. (1985). "Epimorphisms, dominions and semigroups". Algebra Universalis 21 (2–3): 225–233. doi:10.1007/BF01188058.
- Higgins, Peter M. (1992). Techniques of Semigroup Theory. Oxford University Press. ISBN 9780198535775.
- Howie, John M. (1995). "Semigroup amalgams". Fundamentals of Semigroup Theory. Clarendon Press. ISBN 0-19-851194-9.
- Campercholi, Miguel (2018). "Dominions and Primitive Positive Functions". The Journal of Symbolic Logic 83 (1): 40–54. doi:10.1017/jsl.2017.18.
Footnote
External links
- Nicol, Andrew W.. "WHAT IS... THE ZIGZAG THEOREM?". https://math.osu.edu/sites/math.osu.edu/files/ZigZag.pdf.
Original source: https://en.wikipedia.org/wiki/Isbell's zigzag theorem.
Read more |