Isbell duality

From HandWiki
Short description: Construction of enriched category theory

Isbell conjugacy or Isbell duality (named after John R. Isbell[1][2]) is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986.[3][4] That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding.[5]

Definition

Isbell duality.svg

The Yoneda embedding

[math]\displaystyle{ Y:\mathcal{A} \rightarrow \left[\mathcal{A}^{op}, \mathcal{V} \right] }[/math]

[math]\displaystyle{ X \mapsto \mathrm{hom} (-,X). }[/math]

and the co-Yoneda embedding[1][6] or the dual Yoneda embedding[7]

[math]\displaystyle{ Z:\mathcal{A} \rightarrow \left[\mathcal{A}, \mathcal{V} \right]^{op} }[/math]

[math]\displaystyle{ X \mapsto \mathrm{hom} (X,-). }[/math]

Let [math]\displaystyle{ \mathcal{V} }[/math] be a symmetric monoidal closed category, and let [math]\displaystyle{ \mathcal{A} }[/math] be a small category enriched in [math]\displaystyle{ \mathcal{V} }[/math].

The Isbell conjugacy is an adjunction between the categories; [math]\displaystyle{ \left(\mathcal{O} \dashv \mathrm{Spec} \right) \colon \left[\mathcal{A}^{op}, \mathcal{V} \right] {\underset{\mathrm{Spec}}{\overset{\mathcal{O}}{\rightleftarrows}}} \left[\mathcal{A}, \mathcal{V} \right]^{op} }[/math].[3][1][8][9][6]

The functors [math]\displaystyle{ \mathcal{O} \dashv \mathrm{Spec} }[/math] of Isbell duality are such that [math]\displaystyle{ \mathcal{O} \cong \mathrm{Lan_{Y}Z} }[/math] and [math]\displaystyle{ \mathrm{Spec} \cong \mathrm{Lan_{Z}Y} }[/math].[8][10][note 1]

See also

References

  1. 1.0 1.1 1.2 (Baez 2022)
  2. (Di Liberti 2020)
  3. 3.0 3.1 (Lawvere 1986)
  4. (Rutten 1998)
  5. (Melliès Zeilberger)
  6. 6.0 6.1 (Isbell duality in nlab {{{2}}})
  7. (Day Lack)
  8. 8.0 8.1 (Di Liberti 2020)
  9. (Fosco 2021)
  10. (Di Liberti Loregian)

Bibliography

| last = Kelly | first = Gregory Maxwell
| isbn = 0-521-28702-2
| mr = 651714
| publisher = Cambridge University Press, Cambridge-New York
| series = London Mathematical Society Lecture Note Series
| title = Basic concepts of enriched category theory
| volume = 64

Footnote

  1. For the symbol Lan, see left Kan extension.

External links

  • Loregian, Fosco (2018), Kan extensions, https://tetrapharmakon.github.io/stuff/REFCARDS_kan.pdf 
  • Di Liberti, Ivan; Loregian, Fosco (2019). "On the unicity of formal category theories". arXiv:1901.01594 [math.CT].
  • Isbell duality, https://ncatlab.org/nlab/show/Isbell+duality 
  • Yoneda embedding, https://ncatlab.org/nlab/show/Yoneda+embedding 
  • co-Yoneda lemma, https://ncatlab.org/nlab/show/co-Yoneda+lemma