Isbell duality
In mathematics, Isbell conjugacy (a.k.a. Isbell duality or Isbell adjunction) (named after John R. Isbell[1][2]) is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986.[3][4] That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding.[5][6] In addition, Lawvere[7] is states as follows; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".[8]
Definition
Yoneda embedding
The (covariant) Yoneda embedding is a covariant functor from a small category into the category of presheaves on , taking to the contravariant representable functor: [1][9][10]
and the co-Yoneda embedding[1][11] (a.k.a. dual Yoneda embedding[12]) is a contravariant functor from a small category into the opposite of the category of co-presheaves on , taking to the covariant representable functor:
Isbell duality


Every functor has an Isbell conjugate of a functor[1] , given by
In contrast, every functor has an Isbell conjugate of a functor[1] given by
These two functors are not typically inverses, or even natural isomorphisms. Isbell duality asserts that the relationship between these two functors is an adjunction.[1]
Isbell duality is the relationship between Yoneda embedding and co-Yoneda embedding;
Let be a symmetric monoidal closed category, and let be a small category enriched in .
The Isbell duality is an adjunction between the functor categories; .[1][3][11][17][18]
Applying the nerve construction, the functors of Isbell duality are such that and .[17][19][note 1]
See also
- Kan extension
- Limit (category theory)
- Isbell completion
- Profunctor
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 (Baez 2022)
- ↑ (Di Liberti 2020)
- ↑ 3.0 3.1 (Lawvere 1986)
- ↑ (Rutten 1998)
- ↑ (Melliès Zeilberger)
- ↑ (Willerton 2013)
- ↑ (Lawvere 1986)
- ↑ (Space and quantity in nlab {{{2}}})
- ↑ (Yoneda embedding in nlab {{{2}}})
- ↑ (Awodey 2006)
- ↑ 11.0 11.1 (Isbell duality in nlab {{{2}}})
- ↑ (Day Lack)
- ↑ (Di Liberti 2020)
- ↑ (Kelly 1982)
- ↑ (Riehl 2016)
- ↑ (Imamura 2022)
- ↑ 17.0 17.1 (Di Liberti 2020)
- ↑ (Fosco 2021)
- ↑ (Di Liberti Loregian)
Bibliography
- Avery, Tom; Leinster, Tom (2021), "Isbell conjugacy and the reflexive completion", Theory and Applications of Categories 36: 306–347, doi:10.70930/tac/r1jknjot, http://www.tac.mta.ca/tac/volumes/36/12/36-12.pdf
- Awodey, Steve (2006), Category Theory, doi:10.1093/acprof:oso/9780198568612.001.0001, ISBN 978-0-19-856861-2
- Baez, John C. (2022), "Isbell Duality", Notices Amer. Math. Soc. 70: 140–141, doi:10.1090/noti2602, https://www.ams.org/journals/notices/202301/noti2602/noti2602.html?adat=January%202023&trk=2602&galt=none&cat=column&pdfissue=202301&pdffile=rnoti-p140.pdf
Barr, Michael; Kennison, John F.; Raphael, R. (2009), "Isbell duality for modules", Theory and Applications of Categories 22: 401–419, doi:10.70930/tac/1zcfxg2x
- Day, Brian J.; Lack, Stephen (2007), "Limits of small functors", Journal of Pure and Applied Algebra 210 (3): 651–663, doi:10.1016/j.jpaa.2006.10.019.
- Di Liberti, Ivan (2020), "Codensity: Isbell duality, pro-objects, compactness and accessibility", Journal of Pure and Applied Algebra 224 (10), doi:10.1016/j.jpaa.2020.106379
- Fosco, Loregian (22 July 2021), (Co)end Calculus, Cambridge University Press, doi:10.1017/9781108778657, ISBN 9781108746120, https://books.google.com/books?id=cfIuEAAAQBAJ&dq&pg=PA90
- Gutierres, Gonçalo; Hofmann, Dirk (2013), "Approaching Metric Domains", Applied Categorical Structures 21 (6): 617–650, doi:10.1007/s10485-011-9274-z
- Shen, Lili; Zhang, Dexue (2013), "Categories enriched over a quantaloid: Isbell adjunctions and Kan adjunctions", Theory and Applications of Categories 28 (20): 577–615, doi:10.70930/tac/6l0334s5, http://www.tac.mta.ca/tac/volumes/28/20/28-20.pdf
- Isbell, J. R. (1960), "Adequate subcategories", Illinois Journal of Mathematics 4 (4), doi:10.1215/ijm/1255456274
- Isbell, John R. (1966), "Structure of categories", Bulletin of the American Mathematical Society 72 (4): 619–656, doi:10.1090/S0002-9904-1966-11541-0
- Imamura, Yuki (2022), "Grothendieck Enriched Categories", Applied Categorical Structures 30 (5): 1017–1041, doi:10.1007/s10485-022-09681-1
- Kelly, Gregory Maxwell (1982), Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, 64, Cambridge University Press, Cambridge-New York, ISBN 0-521-28702-2, http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
- "Taking categories seriously", Revista Colombiana de Matemáticas 20 (3–4): 147–178, 1986, http://eudml.org/doc/181771
- "Taking categories seriously", Reprints in Theory and Applications of Categories (8): 1–24, 2005, http://www.tac.mta.ca/tac/reprints/articles/8/tr8.pdf
- Lawvere, F. William (February 2016), "Birkhoff's Theorem from a geometric perspective: A simple example", Categories and General Algebraic Structures with Applications 4 (1): 1–8, https://cgasa.sbu.ac.ir/article_12425_1874.html
- Melliès, Paul-André; Zeilberger, Noam (2018), "An Isbell duality theorem for type refinement systems", Mathematical Structures in Computer Science 28 (6): 736–774, doi:10.1017/S0960129517000068
- Pratt, Vaughan (1996), "Broadening the denotational semantics of linear logic", Electronic Notes in Theoretical Computer Science 3: 155–166, doi:10.1016/S1571-0661(05)80415-3
- Rutten, J.J.M.M. (1998), "Weighted colimits and formal balls in generalized metric spaces", Topology and Its Applications 89 (1–2): 179–202, doi:10.1016/S0166-8641(97)00224-1
- Sturtz, Kirk (2018), "The factorization of the Giry monad", Advances in Mathematics 340: 76–105, doi:10.1016/j.aim.2018.10.007
- Sturtz, K. (2019), "Erratum and Addendum: The factorization of the Giry monad", arXiv:1907.00372 [math.CT]
- Wood, R.J (1982), "Some remarks on total categories", Journal of Algebra 75 (2): 538–545, doi:10.1016/0021-8693(82)90055-2
- Willerton, Simon (2013), "Tight spans, Isbell completions and semi-tropical modules", Theory and Applications of Categories 28 (22): 696–732, doi:10.70930/tac/rkp3zgxc, http://www.tac.mta.ca/tac/volumes/28/22/28-22.pdf
Footnote
- ↑ For the symbol Lan, see left Kan extension.
External links
- Di Liberti, Ivan; Loregian, Fosco (2019), "On the unicity of formal category theories", arXiv:1901.01594 [math.CT]
- Loregian, Fosco (2018), Kan extensions, https://tetrapharmakon.github.io/stuff/REFCARDS_kan.pdf
- Valence, Arnaud (2017), Esquisse d'une dualité géométrico-algébrique multidisciplinaire : la dualité d'Isbell, Thèse en cotutelle en Philosophie – Étude des Systèmes, soutenue le 30 mai 2017., https://scd-resnum.univ-lyon3.fr/out/theses/2017_out_valence_a.pdf
- Isbell duality, https://ncatlab.org/nlab/show/Isbell+duality
- space and quantity, https://ncatlab.org/nlab/show/space+and+quantity##Isbell
- Yoneda embedding, https://ncatlab.org/nlab/show/Yoneda+embedding
- co-Yoneda lemma, https://ncatlab.org/nlab/show/co-Yoneda+lemma
- copresheaf, https://ncatlab.org/nlab/show/copresheaf
- Natural transformations and presheaves: Remark 1.28. (presheaves as generalized spaces), https://ncatlab.org/nlab/show/geometry+of+physics+–+basic+notions+of+category+theory#NaturalTransformationsAndPresheaves
- Opposite functors, https://ncatlab.org/nlab/show/opposite+category#opposite_functors
