Jacobi zeta function

From HandWiki

In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as [math]\displaystyle{ zn(u,k) }[/math][1]

[math]\displaystyle{ \Theta(u)=\Theta_{4}\left(\frac{\pi u}{2K}\right) }[/math]
[math]\displaystyle{ Z(u)=\frac{\partial}{\partial u}\ln\Theta(u) }[/math] [math]\displaystyle{ =\frac{\Theta'(u)}{\Theta(u)} }[/math][2]
[math]\displaystyle{ Z(\phi|m)=E(\phi|m)-\frac{E(m)}{K(m)}F(\phi|m) }[/math][3]
Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all their relevant fields and application.
[math]\displaystyle{ zn(u,k)=Z(u)=\int_{0}^{u}dn^{2}v-\frac{E}{K}dv }[/math][1]
This relates Jacobi's common notation of, [math]\displaystyle{ dn {u}=\sqrt{1-m \sin{\theta}^2} }[/math], [math]\displaystyle{ sn u= \sin{\theta} }[/math], [math]\displaystyle{ cn u= \cos{\theta} }[/math].[1] to Jacobi's Zeta function.
Some additional relations include ,
[math]\displaystyle{ zn(u,k)=\frac{\pi}{2K}\frac{\Theta_1'\frac{\pi u}{2K}}{\Theta_1\frac{\pi u}{2K}}-\frac{cn{u}*dn{u}}{sn{u}} }[/math][1]
[math]\displaystyle{ zn(u,k)=\frac{\pi}{2K}\frac{\Theta_2'\frac{\pi u}{2K}}{\Theta_2\frac{\pi u}{2K}}-\frac{sn{u}*dn{u}}{cn{u}} }[/math][1]
[math]\displaystyle{ zn(u,k)=\frac{\pi}{2K}\frac{\Theta_3'\frac{\pi u}{2K}}{\Theta_3\frac{\pi u}{2K}}-k^2\frac{sn{u}*cn{u}}{dn{u}} }[/math][1]
[math]\displaystyle{ zn(u,k)=\frac{\pi}{2K}\frac{\Theta_4'\frac{\pi u}{2K}}{\Theta_4\frac{\pi u}{2K}} }[/math][1]

References