Jantzen filtration

From HandWiki

In representation theory, a Jantzen filtration is a filtration of a Verma module of a semisimple Lie algebra, or a Weyl module of a reductive algebraic group of positive characteristic. Jantzen filtrations were introduced by Jantzen (1979).

Jantzen filtration for Verma modules

If M(λ) is a Verma module of a semisimple Lie algebra with highest weight λ, then the Janzen filtration is a decreasing filtration

[math]\displaystyle{ M(\lambda)=M(\lambda)^0\supseteq M(\lambda)^1\supseteq M(\lambda)^2\supseteq\cdots. }[/math]

It has the following properties:

  • M(λ)1=N(λ), the unique maximal proper submodule of M(λ)
  • The quotients M(λ)i/M(λ)i+1 have non-degenerate contravariant bilinear forms.
  • The Jantzen sum formula holds:
[math]\displaystyle{ \sum_{i\gt 0}\text{Ch}(M(\lambda)^i) = \sum_{\alpha\gt 0, s_\alpha(\lambda)\lt \lambda}\text{Ch}(M(s_\alpha \cdot \lambda)) }[/math]
where [math]\displaystyle{ \text{Ch}(\cdot) }[/math] denotes the formal character.

References