Kautz filter

From HandWiki

In signal processing, the Kautz filter, named after William H. Kautz, is a fixed-pole traversal filter, published in 1954.[1][2] Like Laguerre filters, Kautz filters can be implemented using a cascade of all-pass filters, with a one-pole lowpass filter at each tap between the all-pass sections.[citation needed]

Orthogonal set

Given a set of real poles [math]\displaystyle{ \{-\alpha_1, -\alpha_2, \ldots, -\alpha_n\} }[/math], the Laplace transform of the Kautz orthonormal basis is defined as the product of a one-pole lowpass factor with an increasing-order allpass factor:

[math]\displaystyle{ \Phi_1(s) = \frac{\sqrt{2 \alpha_1}} {(s+\alpha_1)} }[/math]
[math]\displaystyle{ \Phi_2(s) = \frac{\sqrt{2 \alpha_2}} {(s+\alpha_2)} \cdot \frac{(s-\alpha_1)}{(s+\alpha_1)} }[/math]
[math]\displaystyle{ \Phi_n(s) = \frac{\sqrt{2 \alpha_n}} {(s+\alpha_n)} \cdot \frac{(s-\alpha_1)(s-\alpha_2) \cdots (s-\alpha_{n-1})} {(s+\alpha_1)(s+\alpha_2) \cdots (s+\alpha_{n-1})} }[/math].

In the time domain, this is equivalent to

[math]\displaystyle{ \phi_n(t) = a_{n1}e^{-\alpha_1 t} + a_{n2}e^{-\alpha_2 t} + \cdots + a_{nn}e^{-\alpha_n t} }[/math],

where ani are the coefficients of the partial fraction expansion as,

[math]\displaystyle{ \Phi_n(s) = \sum_{i=1}^{n} \frac{a_{ni}}{s+\alpha_i} }[/math]

For discrete-time Kautz filters, the same formulas are used, with z in place of s.[3]

Relation to Laguerre polynomials

If all poles coincide at s = -a, then Kautz series can be written as,
[math]\displaystyle{ \phi_k(t) = \sqrt{2a}(-1)^{k-1}e^{-at}L_{k-1}(2at) }[/math],
where Lk denotes Laguerre polynomials.

See also

  • Kautz code

References

  1. "Transient Synthesis in the Time Domain". I.R.E. Transactions on Circuit Theory 1 (3): 29–39. 1954. 
  2. "Using Kautz Models in Model Reduction". Signal Analysis and Prediction. Birkhäuser. 1998. p. 187. ISBN 978-0-8176-4042-2. https://books.google.com/books?id=qk2LBkKg5zcC&pg=PA187. 
  3. "Equalization of Loudspeaker and Room Responses Using Kautz Filters: Direct Least Squares Design". EURASIP Journal on Advances in Signal Processing (Hindawi Publishing Corporation) 2007: 1. 2007. doi:10.1155/2007/60949.