Kenmotsu manifold

From HandWiki
Short description: Almost-contact manifold

In the mathematical field of differential geometry, a Kenmotsu manifold is an almost-contact manifold endowed with a certain kind of Riemannian metric. They are named after the Japanese mathematician Katsuei Kenmotsu.

Definitions

Let [math]\displaystyle{ (M, \varphi, \xi, \eta) }[/math] be an almost-contact manifold. One says that a Riemannian metric [math]\displaystyle{ g }[/math] on [math]\displaystyle{ M }[/math] is adapted to the almost-contact structure [math]\displaystyle{ (\varphi, \xi, \eta) }[/math] if: [math]\displaystyle{ \begin{align} g_{ij}\xi^j&=\eta_i\\ g_{pq}\varphi_i^p\varphi_j^q&=g_{ij}-\eta_i\eta_j. \end{align} }[/math] That is to say that, relative to [math]\displaystyle{ g_p, }[/math] the vector [math]\displaystyle{ \xi_p }[/math] has length one and is orthogonal to [math]\displaystyle{ \ker \left(\eta_p\right); }[/math] furthermore the restriction of [math]\displaystyle{ g_p }[/math] to [math]\displaystyle{ \ker \left(\eta_p\right) }[/math]is a Hermitian metric relative to the almost-complex structure [math]\displaystyle{ \varphi_p\big\vert_{\ker \left(\eta_p\right)}. }[/math] One says that [math]\displaystyle{ (M, \varphi, \xi, \eta, g) }[/math] is an almost-contact metric manifold.({{{1}}}, {{{2}}})

An almost-contact metric manifold [math]\displaystyle{ (M, \varphi, \xi, \eta, g) }[/math] is said to be a Kenmotsu manifold if({{{1}}}, {{{2}}}) [math]\displaystyle{ \nabla_i\varphi_j^k=-\eta_j\varphi_i^k-g_{ip}\varphi_j^p\xi^k. }[/math]

References

Sources