Kepler–Bouwkamp constant
In plane geometry, the Kepler–Bouwkamp constant (or polygon inscribing constant) is obtained as a limit of the following sequence. Take a circle of radius 1. Inscribe a regular triangle in this circle. Inscribe a circle in this triangle. Inscribe a square in it. Inscribe a circle, regular pentagon, circle, regular hexagon and so forth. The radius of the limiting circle is called the Kepler–Bouwkamp constant.[1] It is named after Johannes Kepler and Christoffel Bouwkamp , and is the inverse of the polygon circumscribing constant.
Numerical value
The decimal expansion of the Kepler–Bouwkamp constant is (sequence A085365 in the OEIS)
- [math]\displaystyle{ \prod_{k=3}^\infty \cos\left(\frac\pi k\right) = 0.1149420448\dots. }[/math]
- The natural logarithm of the Kepler-Bouwkamp constant is given by
- [math]\displaystyle{ -2\sum_{k=1}^\infty\frac{2^{2k}-1}{2k}\zeta(2k)\left(\zeta(2k)-1-\frac{1}{2^{2k}}\right) }[/math]
where [math]\displaystyle{ \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} }[/math] is the Riemann zeta function.
If the product is taken over the odd primes, the constant
- [math]\displaystyle{ \prod_{k=3,5,7,11,13,17,\ldots} \cos\left(\frac\pi k\right) = 0.312832\ldots }[/math]
is obtained (sequence A131671 in the OEIS).
References
- ↑ Finch, S. R. (2003). Mathematical Constants. Cambridge University Press. ISBN 9780521818056. https://archive.org/details/mathematicalcons0000finc.
Further reading
- Kitson, Adrian R. (2006). "The prime analog of the Kepler–Bouwkamp constant". arXiv:math/0608186.
- Kitson, Adrian R. (2008). "The prime analogue of the Kepler-Bouwkamp constant". The Mathematical Gazette 92: 293. doi:10.1017/S0025557200183214.
- Doslic, Tomislav (2014). "Kepler-Bouwkamp radius of combinatorial sequences". Journal of Integer Sequence 17: 14.11.3. https://cs.uwaterloo.ca/journals/JIS/VOL17/Doslic/doslic3.html.
External links
Original source: https://en.wikipedia.org/wiki/Kepler–Bouwkamp constant.
Read more |