Kervaire semi-characteristic

From HandWiki

In mathematics, the Kervaire semi-characteristic, introduced by Michel Kervaire (1956), is an invariant of closed manifolds M of dimension [math]\displaystyle{ 4n+1 }[/math] taking values in [math]\displaystyle{ \Z/2\Z }[/math], given by

[math]\displaystyle{ k_F(M) = \sum_{i=0}^{2n} \dim H^{2i}(M,F)\bmod 2 }[/math]

where F is a field.

Michael Atiyah and Isadore Singer (1971) showed that the Kervaire semi-characteristic of a differentiable manifold is given by the index of a skew-adjoint elliptic operator.

Assuming M is oriented, the Atiyah vanishing theorem states that if M has two linearly independent vector fields, then [math]\displaystyle{ k(M) = 0 }[/math].[1]

The difference [math]\displaystyle{ k_\Q(M)-k_{\Z/2}(M) }[/math] is the deRham invariant of [math]\displaystyle{ M }[/math].[2]

References

Notes

  1. Zhang, Weiping (2001-09-21). Lectures on Chern–Weil theory and Witten deformations. Nankai Tracts in Mathematics. 4. River Edge, NJ: World Scientific. p. 105. ISBN 9789814490627. https://books.google.com/books?id=8OfUCgAAQBAJ&pg=PA105. Retrieved 6 July 2018. 
  2. Lusztig, George; Milnor, John; Peterson, Franklin P. (1969). Semi-characteristics and cobordism. Topology. 8. Topology. p. 357–359.