Kervaire semi-characteristic
From HandWiki
In mathematics, the Kervaire semi-characteristic, introduced by Michel Kervaire (1956), is an invariant of closed manifolds M of dimension [math]\displaystyle{ 4n+1 }[/math] taking values in [math]\displaystyle{ \Z/2\Z }[/math], given by
- [math]\displaystyle{ k_F(M) = \sum_{i=0}^{2n} \dim H^{2i}(M,F)\bmod 2 }[/math]
where F is a field.
Michael Atiyah and Isadore Singer (1971) showed that the Kervaire semi-characteristic of a differentiable manifold is given by the index of a skew-adjoint elliptic operator.
Assuming M is oriented, the Atiyah vanishing theorem states that if M has two linearly independent vector fields, then [math]\displaystyle{ k(M) = 0 }[/math].[1]
The difference [math]\displaystyle{ k_\Q(M)-k_{\Z/2}(M) }[/math] is the deRham invariant of [math]\displaystyle{ M }[/math].[2]
References
- Atiyah, Michael F.; Singer, Isadore M. (1971). "The Index of Elliptic Operators V". Annals of Mathematics. Second Series 93 (1): 139–149. doi:10.2307/1970757.
- Kervaire, Michel (1956). "Courbure intégrale généralisée et homotopie". Mathematische Annalen 131: 219–252. doi:10.1007/BF01342961. ISSN 0025-5831.
- Lee, Ronnie (1973). "Semicharacteristic classes". Topology 12 (2): 183–199. doi:10.1016/0040-9383(73)90006-2.
Notes
- ↑ Zhang, Weiping (2001-09-21). Lectures on Chern–Weil theory and Witten deformations. Nankai Tracts in Mathematics. 4. River Edge, NJ: World Scientific. p. 105. ISBN 9789814490627. https://books.google.com/books?id=8OfUCgAAQBAJ&pg=PA105. Retrieved 6 July 2018.
- ↑ Lusztig, George; Milnor, John; Peterson, Franklin P. (1969). Semi-characteristics and cobordism. Topology. 8. Topology. p. 357–359.
Original source: https://en.wikipedia.org/wiki/Kervaire semi-characteristic.
Read more |