Knaster–Kuratowski fan

From HandWiki
Short description: Topological space that becomes totally disconnected with the removal of a single point
The Knaster–Kuratowski fan, or "Cantor's teepee"

In topology, a branch of mathematics, the Knaster–Kuratowski fan (named after Polish mathematicians Bronisław Knaster and Kazimierz Kuratowski) is a specific connected topological space with the property that the removal of a single point makes it totally disconnected. It is also known as Cantor's leaky tent or Cantor's teepee (after Georg Cantor), depending on the presence or absence of the apex.

Let [math]\displaystyle{ C }[/math] be the Cantor set, let [math]\displaystyle{ p }[/math] be the point [math]\displaystyle{ \left(\tfrac1{2},\tfrac1{2}\right)\in\mathbb R^2 }[/math], and let [math]\displaystyle{ L(c) }[/math], for [math]\displaystyle{ c \in C }[/math], denote the line segment connecting [math]\displaystyle{ (c,0) }[/math] to [math]\displaystyle{ p }[/math]. If [math]\displaystyle{ c \in C }[/math] is an endpoint of an interval deleted in the Cantor set, let [math]\displaystyle{ X_{c} = \{ (x,y) \in L(c) : y \in \mathbb{Q} \} }[/math]; for all other points in [math]\displaystyle{ C }[/math] let [math]\displaystyle{ X_{c} = \{ (x,y) \in L(c) : y \notin \mathbb{Q} \} }[/math]; the Knaster–Kuratowski fan is defined as [math]\displaystyle{ \bigcup_{c \in C} X_{c} }[/math] equipped with the subspace topology inherited from the standard topology on [math]\displaystyle{ \mathbb{R}^2 }[/math].

The fan itself is connected, but becomes totally disconnected upon the removal of [math]\displaystyle{ p }[/math].

See also

References