Krasner's lemma
In number theory, more specifically in p-adic analysis, Krasner's lemma is a basic result relating the topology of a complete non-archimedean field to its algebraic extensions.
Statement
Let K be a complete non-archimedean field and let K be a separable closure of K. Given an element α in K, denote its Galois conjugates by α2, ..., αn. Krasner's lemma states:[1][2]
- if an element β of K is such that
- [math]\displaystyle{ \left|\alpha-\beta\right|\lt \left|\alpha-\alpha_i\right|\text{ for }i=2,\dots,n }[/math]
- then K(α) ⊆ K(β).
Applications
- Krasner's lemma can be used to show that [math]\displaystyle{ \mathfrak{p} }[/math]-adic completion and separable closure of global fields commute.[3] In other words, given [math]\displaystyle{ \mathfrak{p} }[/math] a prime of a global field L, the separable closure of the [math]\displaystyle{ \mathfrak{p} }[/math]-adic completion of L equals the [math]\displaystyle{ \overline{\mathfrak{p}} }[/math]-adic completion of the separable closure of L (where [math]\displaystyle{ \overline{\mathfrak{p}} }[/math] is a prime of L above [math]\displaystyle{ \mathfrak{p} }[/math]).
- Another application is to proving that Cp — the completion of the algebraic closure of Qp — is algebraically closed.[4][5]
Generalization
Krasner's lemma has the following generalization.[6] Consider a monic polynomial
- [math]\displaystyle{ f^*=\prod_{k=1}^n(X-\alpha_k^*) }[/math]
of degree n > 1 with coefficients in a Henselian field (K, v) and roots in the algebraic closure K. Let I and J be two disjoint, non-empty sets with union {1,...,n}. Moreover, consider a polynomial
- [math]\displaystyle{ g=\prod_{i\in I}(X-\alpha_i) }[/math]
with coefficients and roots in K. Assume
- [math]\displaystyle{ \forall i\in I\forall j\in J: v(\alpha_i-\alpha_i^*)\gt v(\alpha_i^*-\alpha_j^*). }[/math]
Then the coefficients of the polynomials
- [math]\displaystyle{ g^*:=\prod_{i\in I}(X-\alpha_i^*),\ h^*:=\prod_{j\in J}(X-\alpha_j^*) }[/math]
are contained in the field extension of K generated by the coefficients of g. (The original Krasner's lemma corresponds to the situation where g has degree 1.)
Notes
- ↑ Lemma 8.1.6 of Neukirch, Schmidt & Wingberg 2008
- ↑ Lorenz (2008) p.78
- ↑ Proposition 8.1.5 of Neukirch, Schmidt & Wingberg 2008
- ↑ Proposition 10.3.2 of Neukirch, Schmidt & Wingberg 2008
- ↑ Lorenz (2008) p.80
- ↑ Brink (2006), Theorem 6
References
- Brink, David (2006). "New light on Hensel's Lemma". Expositiones Mathematicae 24 (4): 291–306. doi:10.1016/j.exmath.2006.01.002. ISSN 0723-0869.
- Lorenz, Falko (2008). Algebra. Volume II: Fields with Structure, Algebras and Advanced Topics. Springer-Verlag. ISBN 978-0-387-72487-4.
- Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 206. ISBN 3-540-21902-1.
- Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2008), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323 (Second ed.), Berlin: Springer-Verlag, ISBN 978-3-540-37888-4
Original source: https://en.wikipedia.org/wiki/Krasner's lemma.
Read more |