Krull's separation lemma

From HandWiki

In abstract algebra, Krull's separation lemma is a lemma in ring theory. It was proved by Wolfgang Krull in 1928.[1]

Statement of the lemma

Let [math]\displaystyle{ I }[/math] be an ideal and let [math]\displaystyle{ M }[/math] be a multiplicative system (i.e. [math]\displaystyle{ M }[/math] is closed under multiplication) in a ring [math]\displaystyle{ R }[/math], and suppose [math]\displaystyle{ I \cap M = \varnothing }[/math]. Then there exists a prime ideal [math]\displaystyle{ P }[/math] satisfying [math]\displaystyle{ I \subseteq P }[/math] and [math]\displaystyle{ P \cap M = \varnothing }[/math].[2]

References

  1. Krull, Wolfgang (1928). "Zur Theorie der zweiseitigen Ideale in nichtkommutativen Bereichen". Mathematische Zeitschrift 28 (1): 481–503. doi:10.1007/BF01181179. ISSN 0025-5874. 
  2. Sun, Shu-Hao (1992). "On separation lemmas". Journal of Pure and Applied Algebra 78 (3): 301–310. doi:10.1016/0022-4049(92)90112-S.