Kummer's congruence
In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by Ernst Eduard Kummer (1851).
(Kubota Leopoldt) used Kummer's congruences to define the p-adic zeta function.
Statement
The simplest form of Kummer's congruence states that
- [math]\displaystyle{ \frac{B_h}{h}\equiv \frac{B_k}{k} \pmod p \text{ whenever } h\equiv k \pmod {p-1} }[/math]
where p is a prime, h and k are positive even integers not divisible by p−1 and the numbers Bh are Bernoulli numbers.
More generally if h and k are positive even integers not divisible by p − 1, then
- [math]\displaystyle{ (1-p^{h-1})\frac{B_h}{h}\equiv (1-p^{k-1})\frac{B_k}{k} \pmod {p^{a+1}} }[/math]
whenever
- [math]\displaystyle{ h\equiv k\pmod {\varphi(p^{a+1})} }[/math]
where φ(pa+1) is the Euler totient function, evaluated at pa+1 and a is a non negative integer. At a = 0, the expression takes the simpler form, as seen above. The two sides of the Kummer congruence are essentially values of the p-adic zeta function, and the Kummer congruences imply that the p-adic zeta function for negative integers is continuous, so can be extended by continuity to all p-adic integers.
See also
- Von Staudt–Clausen theorem, another congruence involving Bernoulli numbers
References
- Koblitz, Neal (1984), p-adic Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, vol. 58, Berlin, New York: Springer-Verlag, ISBN 978-0-387-96017-3
- Kubota, Tomio; Leopoldt, Heinrich-Wolfgang (1964), "Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-Funktionen", Journal für die reine und angewandte Mathematik 214/215: 328–339, doi:10.1515/crll.1964.214-215.328, ISSN 0075-4102, https://gdz.sub.uni-goettingen.de/id/PPN243919689_0214_0215?tify={%22pages%22:%5B334%5D,%22view%22:%22info%22}
- Kummer, Ernst Eduard (1851), "Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen", Journal für die Reine und Angewandte Mathematik 41: 368–372, doi:10.1515/crll.1851.41.368, ERAM 041.1136cj, ISSN 0075-4102, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002147319
Original source: https://en.wikipedia.org/wiki/Kummer's congruence.
Read more |