Landau kernel
The Landau kernel is named after the German number theorist Edmund Landau. The kernel is a summability kernel defined as:[1]
[math]\displaystyle{ L_n (t) = \begin{cases} \frac{(1-t^2)^n}{c_n} & \text{if } -1 \leq t \leq 1\\ 0 & \text{otherwise} \end{cases} }[/math]where the coefficients [math]\displaystyle{ c_n }[/math] are defined as follows
[math]\displaystyle{ c_n = \int_{-1}^1 (1-t^2)^n \, dt }[/math]
Visualisation
Using integration by parts, one can show that:[2] [math]\displaystyle{ c_n = \frac{(n!)^2 \, 2^{2n+1}}{(2n)! (2n+1)}. }[/math] Hence, this implies that the Landau Kernel can be defined as follows: [math]\displaystyle{ L_n (t) = \begin{cases} (1-t^2)^n \frac{(2n)! (2n+1)}{(n!)^2 \, 2^{2n+1}} & \text{for t} \in [-1,1]\\ 0 & \text{elsewhere} \end{cases} }[/math]
Plotting this function for different values of n reveals that as n goes to infinity, [math]\displaystyle{ L_n(t) }[/math] approaches the Dirac delta function, as seen in the image,[1] where the following functions are plotted.
Properties
Some general properties of the Landau kernel is that it is nonnegative and continuous on [math]\displaystyle{ \mathbb{R} }[/math]. These properties are made more concrete in the following section.
Dirac sequences
Definition: Dirac Sequence — A Dirac Sequence is a sequence {[math]\displaystyle{ K_n(t) }[/math]} of functions [math]\displaystyle{ K_n(t) \colon \mathbb{R} \to \mathbb{R} }[/math] that satisfies the following properities:
- [math]\displaystyle{ K_n(t) \geq 0, \, \, \forall t \in \mathbb{R} \text{ and } \forall n \in \mathbb{Z} }[/math]
- [math]\displaystyle{ \int_{-\infty}^{\infty} K_n (t) \, dt =1, \, \forall n }[/math]
- [math]\displaystyle{ \forall \epsilon \gt 0, \, \forall \delta \gt 0, \, \exists N \in \mathbb{Z}_+ \text{ such that } \forall n \geq N : \int_{\mathbb{R} \setminus [-\delta,\delta]}K_n(t) \, dt= \int_{-\infty}^{-\delta} K_n (t) \, dt + \int_{\delta}^{\infty} K_n (t) \, dt \lt \epsilon }[/math]
The third bullet point means that the area under the graph of the function [math]\displaystyle{ y = K_n(t) }[/math] becomes increasingly concentrated close to the origin as n approaches infinity. This definition lends us to the following theorem.
Theorem — The sequence of Landau Kernels is a Dirac sequence
Proof: We prove the third property only. In order to do so, we introduce the following lemma:
Lemma — The coefficients satsify the following relationship, [math]\displaystyle{ c_n \geq \frac{2}{n+1} }[/math]
Proof of the Lemma:
Using the definition of the coefficients above, we find that the integrand is even, we may write[math]\displaystyle{ \frac{c_n}{2} = \int_{0}^1 (1-t^2)^n \, dt = \int_{0}^1 (1-t)^n(1+t)^n \, dt \geq \int_{0}^1 (1-t)^n \, dt = \frac{1}{1+n} }[/math]completing the proof of the lemma. A corollary of this lemma is the following:
Corollary — For all positive, real [math]\displaystyle{ \delta : }[/math] [math]\displaystyle{ \int_{\mathbb{R} \setminus [-\delta,\delta]}K_n(t) \, dt \leq \frac{2}{c_n} \int_{\delta}^1 (1-t^2)^n \, dt \leq (n+1)(1-r^2)^n }[/math]
See also
References
- ↑ 1.0 1.1 Terras, Audrey (May 25, 2009). "Lecture 8. Dirac and Weierstrass". https://mathweb.ucsd.edu/~aterras/ma142blecture8.pdf.
- ↑ Hilber, Courant. Methods of Mathematical Physics, Vol. I. pp. 84.
Original source: https://en.wikipedia.org/wiki/Landau kernel.
Read more |