Landsberg–Schaar relation

From HandWiki
Short description: Theorem

In number theory and harmonic analysis, the Landsberg–Schaar relation (or identity) is the following equation, which is valid for arbitrary positive integers p and q:

[math]\displaystyle{ \frac{1}{\sqrt{p}}\sum_{n=0}^{p-1}\exp\left(\frac{2\pi in^2q}{p}\right)= \frac{e^{\frac14\pi i}}{\sqrt{2q}}\sum_{n=0}^{2q-1}\exp\left(-\frac{\pi in^2p}{2q}\right). }[/math]

The standard way to prove it[1] is to put τ = 2iq/p + ε, where ε > 0 in this identity due to Jacobi (which is essentially just a special case of the Poisson summation formula in classical harmonic analysis):

[math]\displaystyle{ \sum_{n=-\infty}^{+\infty}e^{-\pi n^2\tau}=\frac{1}{\sqrt{\tau}} \sum_{n=-\infty}^{+\infty}e^{-\pi \frac{n^2}{\tau}} }[/math]

and then let ε → 0.

A proof using only finite methods was discovered in 2018 by Ben Moore.[2][3]

If we let q = 1, the identity reduces to a formula for the quadratic Gauss sum modulo p.

The Landsberg–Schaar identity can be rephrased more symmetrically as

[math]\displaystyle{ \frac{1}{\sqrt{p}}\sum_{n=0}^{p-1}\exp\left(\frac{\pi in^2q}{p}\right)= \frac{e^{\frac14\pi i}}{\sqrt{q}}\sum_{n=0}^{q-1}\exp\left(-\frac{\pi in^2p}{q}\right) }[/math]

provided that we add the hypothesis that pq is an even number.

References

  1. Dym, H.; McKean, H. P. (1972). Fourier Series and Integrals. Academic Press. ISBN 978-0122264511. 
  2. Moore, Ben (2020-12-01). "A proof of the Landsberg–Schaar relation by finite methods" (in en). The Ramanujan Journal 53 (3): 653–665. doi:10.1007/s11139-019-00195-4. ISSN 1572-9303. https://doi.org/10.1007/s11139-019-00195-4. 
  3. Moore, Ben (2019-07-17). "A proof of the Landsberg-Schaar relation by finite methods". arXiv:1810.06172 [math.NT].