Lebesgue point
In mathematics, given a locally Lebesgue integrable function [math]\displaystyle{ f }[/math] on [math]\displaystyle{ \mathbb{R}^k }[/math], a point [math]\displaystyle{ x }[/math] in the domain of [math]\displaystyle{ f }[/math] is a Lebesgue point if[1]
- [math]\displaystyle{ \lim_{r\rightarrow 0^+}\frac{1}{\lambda (B(x,r))}\int_{B(x,r)} \!|f(y)-f(x)|\,\mathrm{d}y=0. }[/math]
Here, [math]\displaystyle{ B(x,r) }[/math] is a ball centered at [math]\displaystyle{ x }[/math] with radius [math]\displaystyle{ r \gt 0 }[/math], and [math]\displaystyle{ \lambda (B(x,r)) }[/math] is its Lebesgue measure. The Lebesgue points of [math]\displaystyle{ f }[/math] are thus points where [math]\displaystyle{ f }[/math] does not oscillate too much, in an average sense.[2]
The Lebesgue differentiation theorem states that, given any [math]\displaystyle{ f\in L^1(\mathbb{R}^k) }[/math], almost every [math]\displaystyle{ x }[/math] is a Lebesgue point of [math]\displaystyle{ f }[/math].[3]
References
- ↑ Bogachev, Vladimir I. (2007), Measure Theory, Volume 1, Springer, p. 351, ISBN 9783540345145, https://books.google.com/books?id=CoSIe7h5mTsC&pg=PA351.
- ↑ Martio, Olli; Ryazanov, Vladimir; Srebro, Uri; Yakubov, Eduard (2008), Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, p. 105, ISBN 9780387855882, https://books.google.com/books?id=y3oGDTHi-6oC&pg=PA105.
- ↑ Giaquinta, Mariano; Modica, Giuseppe (2010), Mathematical Analysis: An Introduction to Functions of Several Variables, Springer, p. 80, ISBN 9780817646127, https://books.google.com/books?id=0YE_AAAAQBAJ&pg=PA80.
Original source: https://en.wikipedia.org/wiki/Lebesgue point.
Read more |