List of integrals of Gaussian functions

From HandWiki
Short description: none

In the expressions in this article,

[math]\displaystyle{ \phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2} x^2} }[/math]

is the standard normal probability density function,

[math]\displaystyle{ \Phi(x) = \int_{-\infty}^x \phi(t) \, dt = \frac{1}{2}\left(1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right) }[/math]

is the corresponding cumulative distribution function (where erf is the error function), and

[math]\displaystyle{ T(h,a) = \phi(h)\int_0^a \frac{\phi(hx)}{1+x^2} \, dx }[/math]

is Owen's T function.

Owen[1] has an extensive list of Gaussian-type integrals; only a subset is given below.

Indefinite integrals

  • [math]\displaystyle{ \int \phi(x) \, dx = \Phi(x) + C }[/math]
  • [math]\displaystyle{ \int x \phi(x) \, dx = -\phi(x) + C }[/math]
  • [math]\displaystyle{ \int x^2 \phi(x) \, dx = \Phi(x) - x\phi(x) + C }[/math]
  • [math]\displaystyle{ \int x^{2k+1} \phi(x) \, dx = -\phi(x) \sum_{j=0}^k \frac{(2k)!!}{(2j)!!}x^{2j} + C }[/math][2]
  • [math]\displaystyle{ \int x^{2k+2} \phi(x) \, dx = -\phi(x)\sum_{j=0}^k\frac{(2k+1)!!}{(2j+1)!!}x^{2j+1} + (2k+1)!!\,\Phi(x) + C }[/math]

In the previous two integrals, n!! is the double factorial: for even n it is equal to the product of all even numbers from 2 to n, and for odd n it is the product of all odd numbers from 1 to n; additionally it is assumed that 0!! = (−1)!! = 1.

  • [math]\displaystyle{ \int \phi(x)^2 \, dx = \frac{1}{2\sqrt{\pi}} \Phi\left(x\sqrt{2}\right) + C }[/math]
  • [math]\displaystyle{ \int \phi(x)\phi(a + bx) \, dx = \frac{1}{t}\phi\left(\frac{a}{t}\right)\Phi\left(tx + \frac{a}{t}\right) + C, \qquad t = \sqrt{1+b^2} }[/math][3]
  • [math]\displaystyle{ \int x\phi(a+bx) \, dx = -\frac{1}{b^2}\left (\phi(a+bx) + a\Phi(a+bx)\right) + C }[/math]
  • [math]\displaystyle{ \int x^2\phi(a+bx) \, dx = \frac{1}{b^3} \left ((a^2+1)\Phi(a+bx) + (a-bx)\phi(a+bx) \right ) + C }[/math]
  • [math]\displaystyle{ \int \phi(a+bx)^n \, dx = \frac{1}{b\sqrt{n(2\pi)^{n-1}}} \Phi\left(\sqrt{n}(a+bx)\right) + C }[/math]
  • [math]\displaystyle{ \int \Phi(a+bx) \, dx = \frac{1}{b} \left ((a+bx)\Phi(a+bx) + \phi(a+bx)\right) + C }[/math]
  • [math]\displaystyle{ \int x\Phi(a+bx) \, dx = \frac{1}{2b^2}\left((b^2x^2 - a^2 - 1)\Phi(a+bx) + (bx-a)\phi(a+bx)\right) + C }[/math]
  • [math]\displaystyle{ \int x^2\Phi(a+bx) \, dx = \frac{1}{3b^3}\left((b^3x^3 + a^3 + 3a)\Phi(a+bx) + (b^2x^2-abx+a^2+2)\phi(a+bx)\right) + C }[/math]
  • [math]\displaystyle{ \int x^n \Phi(x) \, dx = \frac{1}{n+1}\left( \left (x^{n+1}-nx^{n-1} \right )\Phi(x) + x^n\phi(x) + n(n-1)\int x^{n-2}\Phi(x)\,dx \right) + C }[/math]
  • [math]\displaystyle{ \int x\phi(x)\Phi(a+bx) \, dx = \frac{b}{t}\phi\left(\frac{a}{t}\right)\Phi\left(xt + \frac{ab}{t}\right) - \phi(x)\Phi(a+bx) + C, \qquad t = \sqrt{1+b^2} }[/math]
  • [math]\displaystyle{ \int \Phi(x)^2 \, dx = x \Phi(x)^2 + 2\Phi(x)\phi(x) - \frac{1}{\sqrt{\pi}}\Phi\left(x\sqrt{2}\right) + C }[/math]
  • [math]\displaystyle{ \int e^{cx}\phi(bx)^n \, dx = \frac{e^{\frac{c^2}{2nb^2}}}{b\sqrt{n(2\pi)^{n-1}}}\Phi \left (\frac{b^2xn-c }{b\sqrt{n}} \right ) + C, \qquad b\ne 0, n\gt 0 }[/math]

Definite integrals

  • [math]\displaystyle{ \int_{-\infty}^\infty x^2\phi(x)^n \, dx = \frac{1}{\sqrt{n^3(2\pi)^{n-1}}} }[/math]
  • [math]\displaystyle{ \int_{-\infty}^0 \phi(ax)\Phi(bx) \, dx = \frac{1}{2\pi |a|}\left(\frac{\pi}{2}-\arctan\left(\frac{b}{|a|}\right)\right) }[/math]
  • [math]\displaystyle{ \int_0^{\infty} \phi(ax)\Phi(bx) \, dx = \frac{1}{2\pi |a|}\left(\frac{\pi}{2} + \arctan\left(\frac{b}{|a|}\right)\right) }[/math]
  • [math]\displaystyle{ \int_0^\infty x\phi(x)\Phi(bx) \, dx = \frac{1}{2\sqrt{2\pi}} \left( 1 + \frac{b}{\sqrt{1+b^2}} \right) }[/math]
  • [math]\displaystyle{ \int_0^\infty x^2\phi(x)\Phi(bx) \, dx = \frac{1}{4} + \frac{1}{2\pi} \left(\frac{b}{1+b^2} + \arctan(b) \right) }[/math]
  • [math]\displaystyle{ \int_{-\infty}^\infty x \phi(x)^2\Phi(x) \, dx = \frac{1}{4\pi\sqrt{3}} }[/math]
  • [math]\displaystyle{ \int_0^\infty \Phi(bx)^2 \phi(x) \, dx = \frac{1}{2\pi}\left( \arctan(b) + \arctan \sqrt{1+2b^2} \right) }[/math]
  • [math]\displaystyle{ \int_{-\infty}^\infty \Phi(a+bx)^2 \phi(x) \,dx = \Phi\left( \frac{a}{\sqrt{1+b^2}} \right)-2T\left( \frac{a}{\sqrt{1+b^2}}, \frac{1}{\sqrt{1+2b^2}} \right) }[/math]
  • [math]\displaystyle{ \int_{-\infty}^{\infty} x \Phi(a+bx)^2 \phi(x) \,dx = \frac{2b}{\sqrt{1+b^2}} \phi\left(\frac{a}{t}\right) \Phi\left(\frac{a}{\sqrt{1+b^2}\sqrt{1+2b^2}}\right) }[/math][4]
  • [math]\displaystyle{ \int_{-\infty}^\infty \Phi(bx)^2 \phi(x) \, dx = \frac{1}{\pi}\arctan \sqrt{1+2b^2} }[/math]
  • [math]\displaystyle{ \int_{-\infty}^\infty x\phi(x)\Phi(bx) \, dx = \int_{-\infty}^\infty x\phi(x)\Phi(bx)^2 \, dx = \frac{b}{\sqrt{2\pi(1+b^2)}} }[/math]
  • [math]\displaystyle{ \int_{-\infty}^\infty \Phi(a+bx)\phi(x) \, dx = \Phi\left(\frac{a}{\sqrt{1+b^2}}\right) }[/math]
  • [math]\displaystyle{ \int_{-\infty}^\infty x\Phi(a+bx)\phi(x) \, dx = \frac{b}{t}\phi\left(\frac{a}{t}\right), \qquad t = \sqrt{1+b^2} }[/math]
  • [math]\displaystyle{ \int_0^\infty x\Phi(a+bx)\phi(x) \, dx =\frac{b}{t}\phi\left(\frac{a}{t}\right)\Phi\left(-\frac{ab}{t}\right) + \frac{1}{\sqrt{2\pi}}\Phi(a), \qquad t = \sqrt{1+b^2} }[/math]
  • [math]\displaystyle{ \int_{-\infty}^\infty \ln(x^2) \frac{1}{\sigma}\phi\left(\frac{x}{\sigma}\right) \, dx = \ln(\sigma^2) - \gamma - \ln 2 \approx \ln(\sigma^2) - 1.27036 }[/math]

References

  1. Owen 1980.
  2. (Patel Read) lists this integral above without the minus sign, which is an error. See calculation by WolframAlpha.
  3. (Patel Read) report this integral with error, see WolframAlpha.
  4. (Patel Read) report this integral incorrectly by omitting x from the integrand.
  • Owen, D. (1980). "A table of normal integrals". Communications in Statistics: Simulation and Computation B9 (4): 389–419. doi:10.1080/03610918008812164. 
  • Patel, Jagdish K.; Read, Campbell B. (1996). Handbook of the normal distribution (2nd ed.). CRC Press. ISBN 0-8247-9342-0.