List of planar symmetry groups

From HandWiki
Short description: None

This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane:

Rosette groups

There are two families of discrete two-dimensional point groups, and they are specified with parameter n, which is the order of the group of the rotations in the group.

Family Intl
(orbifold)
Schön. Geo [1]
Coxeter
Order Examples
Cyclic symmetry n
(n•)
Cn n
[n]+
CDel node h2.pngCDel n.pngCDel node h2.png
n Cyclic symmetry 1.svg
C1, [ ]+ (•)
Cyclic symmetry 2.svg
C2, [2]+ (2•)
Cyclic symmetry 3.png
C3, [3]+ (3•)
Cyclic symmetry 4.png
C4, [4]+ (4•)
Cyclic symmetry 5.png
C5, [5]+ (5•)
Cyclic symmetry 6.png
C6, [6]+ (6•)
Dihedral symmetry nm
(*n•)
Dn n
[n]
CDel node.pngCDel n.pngCDel node.png
2n Dihedral symmetry domains 1.png
D1, [ ] (*•)
Dihedral symmetry domains 2.png
D2, [2] (*2•)
Dihedral symmetry domains 3.png
D3, [3] (*3•)
Dihedral symmetry domains 4.png
D4, [4] (*4•)
Dihedral symmetry domains 5.png
D5, [5] (*5•)
Dihedral symmetry domains 6.png
D6, [6] (*6•)

Frieze groups

The 7 frieze groups, the two-dimensional line groups, with a direction of periodicity are given with five notational names. The Schönflies notation is given as infinite limits of 7 dihedral groups. The yellow regions represent the infinite fundamental domain in each.

[1,∞], CDel node h2.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p1m1
(*∞•)
p1 C∞v [1,∞]
CDel node h2.pngCDel 2.pngCDel node c2.pngCDel infin.pngCDel node c6.png
Frieze group m1.png 120px
Frieze sidle.pngsidle
p1
(∞•)
p1 C [1,∞]+
CDel node h2.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Frieze group 11.png 120px
Frieze hop.pnghop
[2,∞+], CDel node.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p11m
(∞*)
p. 1 C∞h [2,∞+]
CDel node c2.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Frieze group 1m.png 120px
Frieze jump.pngjump
p11g
(∞×)
p.g1 S2∞ [2+,∞+]
CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Frieze group 1g.png 120px
Frieze step.pngstep
[2,∞], CDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p2mm
(*22∞)
p2 D∞h [2,∞]
CDel node c5.pngCDel 2.pngCDel node c2.pngCDel infin.pngCDel node c6.png
Frieze group mm.png 120px
Frieze spinning jump.pngspinning jump
p2mg
(2*∞)
p2g D∞d [2+,∞]
CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node c2.png
Frieze group mg.png 120px
Frieze spinning sidle.pngspinning sidle
p2
(22∞)
p2 D [2,∞]+
CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Frieze group 12.png 120px
Frieze spinning hop.pngspinning hop

Wallpaper groups

The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).

The p1 and p2 groups, with no reflectional symmetry, are repeated in all classes. The related pure reflectional Coxeter group are given with all classes except oblique.

Square
[4,4], CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1
Wallpaper group diagram p1 square.svg
Monotropic
p2
(2222)
p2
[4,1+,4]+
CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png
[1+,4,4,1+]+
CDel node h0.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node h0.png
Wallpaper group diagram p2 square.svg
Ditropic
pgg
(22×)
pg2g
[4+,4+]
CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png
Wallpaper group diagram pgg square.svg
Diglide
pmm
(*2222)
p2
[4,1+,4]
CDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
[1+,4,4,1+]
CDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
Wallpaper group diagram pmm square.svg
Discopic
cmm
(2*22)
c2
[(4,4,2+)]
CDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png
Wallpaper group diagram cmm square.svg
Dirhombic
p4
(442)
p4
[4,4]+
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node h2.png
Wallpaper group diagram p4 square.svg
Tetratropic
p4g
(4*2)
pg4
[4+,4]
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png
Wallpaper group diagram p4g square.svg
Tetragyro
p4m
(*442)
p4
[4,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Wallpaper group diagram p4m square.svg
Tetrascopic
Rectangular
[∞h,2,∞v], CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1
[∞+,2,∞+]
CDel labelinfin.pngCDel branch h2h2.pngCDel 2.pngCDel branch h2h2.pngCDel labelinfin.png
Wallpaper group diagram p1 rect.svg
Monotropic
p2
(2222)
p2
[∞,2,∞]+
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram p2 rect.svg
Ditropic
pg(h)
(××)
pg1
h: [∞+,(2,∞)+]
CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pg.svg
Monoglide
pg(v)
(××)
pg1
v: [(∞,2)+,∞+]
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pg rotated.svg
Monoglide
pgm
(22*)
pg2
h: [(∞,2)+,∞]
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
Wallpaper group diagram pmg.svg
Digyro
pmg
(22*)
pg2
v: [∞,(2,∞)+]
CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pmg rotated.svg
Digyro
pm(h)
(**)
p1
h: [∞+,2,∞]
CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
Wallpaper group diagram pm.svg
Monoscopic
pm(v)
(**)
p1
v: [∞,2,∞+]
CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram pm rotated.svg
Monoscopic
pmm
(*2222)
p2
[∞,2,∞]
CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
Wallpaper group diagram pmm.svg
Discopic
Rhombic
[∞h,2+,∞v], CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1
[∞+,2+,∞+]
CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram p1 rhombic.svg
Monotropic
p2
(2222)
p2
[∞,2+,∞]+
CDel label2.pngCDel branch h2h2.pngCDel 2.pngCDel iaib.pngCDel 2.pngCDel branch h2h2.pngCDel label2.png
Wallpaper group diagram p2 rhombic.svg
Ditropic
cm(h)
(*×)
c1
h: [∞+,2+,∞]
CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
Wallpaper group diagram cm.svg
Monorhombic
cm(v)
(*×)
c1
v: [∞,2+,∞+]
CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h4.pngCDel infin.pngCDel node h2.png
Wallpaper group diagram cm rotated.svg
Monorhombic
pgg
(22×)
pg2g
[((∞,2)+)[2]]
CDel node h2.pngCDel split1-2i.pngCDel nodes h4h4.pngCDel split2-i2.pngCDel node h2.png
Wallpaper group diagram pgg.svg
Diglide
cmm
(2*22)
c2
[∞,2+,∞]
CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel infin.pngCDel node.png
Wallpaper group diagram cmm.svg
Dirhombic
Parallelogrammatic (oblique)
p1
(°)
p1
Wallpaper group diagram p1.svg
Monotropic
p2
(2222)
p2
Wallpaper group diagram p2.svg
Ditropic
Hexagonal/Triangular
[6,3], CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png / [3[3]], CDel node.pngCDel split1.pngCDel branch.png
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1
Wallpaper group diagram p1 half.svg
Monotropic
p2
(2222)
p2
[6,3]Δ Wallpaper group diagram p2 half.svg
Ditropic
cmm
(2*22)
c2
[6,3] Wallpaper group diagram cmm half.svg
Dirhombic
p3
(333)
p3
[1+,6,3+]
CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
[3[3]]+
CDel branch h2h2.pngCDel split2.pngCDel node h2.png
Wallpaper group diagram p3.svg
Tritropic
p3m1
(*333)
p3
[1+,6,3]
CDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[3[3]]
CDel branch.pngCDel split2.pngCDel node.png
Wallpaper group diagram p3m1.svg
Triscopic
p31m
(3*3)
h3
[6,3+]
CDel node.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
Wallpaper group diagram p31m.svg
Trigyro
p6
(632)
p6
[6,3]+
CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
Wallpaper group diagram p6.svg
Hexatropic
p6m
(*632)
p6
[6,3]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Wallpaper group diagram p6m.svg
Hexascopic

Wallpaper subgroup relationships

Subgroup relationships among the 17 wallpaper group[2]
o 2222 ×× ** 22× 22* *2222 2*22 442 4*2 *442 333 *333 3*3 632 *632
p1 p2 pg pm cm pgg pmg pmm cmm p4 p4g p4m p3 p3m1 p31m p6 p6m
o p1 2
2222 p2 2 2 2
×× pg 2 2
** pm 2 2 2 2
cm 2 2 2 3
22× pgg 4 2 2 3
22* pmg 4 2 2 2 4 2 3
*2222 pmm 4 2 4 2 4 4 2 2 2
2*22 cmm 4 2 4 4 2 2 2 2 4
442 p4 4 2 2
4*2 p4g 8 4 4 8 4 2 4 4 2 2 9
*442 p4m 8 4 8 4 4 4 4 2 2 2 2 2
333 p3 3 3
*333 p3m1 6 6 6 3 2 4 3
3*3 p31m 6 6 6 3 2 3 4
632 p6 6 3 2 4
*632 p6m 12 6 12 12 6 6 6 6 3 4 2 2 2 3

See also

Notes

  1. The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF [1]
  2. Coxeter, (1980), The 17 plane groups, Table 4

References

  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ISBN 978-1-56881-220-5 (Orbifold notation for polyhedra, Euclidean and hyperbolic tilings)
  • On Quaternions and Octonions, 2003, John Horton Conway and Derek A. Smith ISBN 978-1-56881-134-5
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Coxeter, H. S. M.; Moser, W. O. J. (1980). Generators and Relations for Discrete Groups. New York: Springer-Verlag. ISBN 0-387-09212-9. 
  • N. W. Johnson: Geometries and Transformations, (2018) ISBN:978-1-107-10340-5 Chapter 12: Euclidean Symmetry Groups

External links