Lossless-Join Decomposition
In computer science the concept of a Lossless-Join Decomposition is central in removing redundancy safely from databases while preserving the original data.[1]
Lossless-join Decomposition
Can also be called Nonadditive.[citation needed] If you decompose a relation [math]\displaystyle{ R }[/math] into relations [math]\displaystyle{ R_1, R_2 }[/math] you will have a Lossless-Join if a natural join of the two smaller relations yields back the original relation, i .e.;
[math]\displaystyle{ R_1 \bowtie R_2 = R }[/math].
If [math]\displaystyle{ R }[/math] is split into [math]\displaystyle{ R_1 }[/math] and [math]\displaystyle{ R_2 }[/math], for this decomposition to be lossless then at least one of the two following criteria should be met.
Check 1: Verify join explicitly
Projecting on [math]\displaystyle{ R_1 }[/math] and [math]\displaystyle{ R_2 }[/math], and joining back, results in the relation you started with.[2]
Check 2: Via functional dependencies
Let [math]\displaystyle{ R }[/math] be a relation schema.
Let F be a set of functional dependencies on [math]\displaystyle{ R }[/math].
Let [math]\displaystyle{ R_1 }[/math] and [math]\displaystyle{ R_2 }[/math] form a decomposition of [math]\displaystyle{ R }[/math] .
The decomposition is a lossless-join decomposition of [math]\displaystyle{ R }[/math] if at least one of the following functional dependencies are in F+ (where F+ stands for the closure for every attribute or attribute sets in F):[3]
- [math]\displaystyle{ R_1 \cap R_2 \rightarrow R_1 }[/math]
- [math]\displaystyle{ R_1 \cap R_2 \rightarrow R_2 }[/math]
Example
- Let [math]\displaystyle{ R = (A, B, C, D) }[/math] be the relation schema, with A, B, C and D attributes.
- Let [math]\displaystyle{ F = \{ A \rightarrow BC \} }[/math] be the set of functional dependencies.
- Decomposition into [math]\displaystyle{ R_1 = (A, B, C) }[/math] and [math]\displaystyle{ R_2 = (A, D) }[/math] is lossless under F because [math]\displaystyle{ R_1 \cap R_2 = A) }[/math]. A is a superkey in [math]\displaystyle{ R_1 }[/math], meaning we have a functional dependency [math]\displaystyle{ \{A \rightarrow BC\} }[/math]. In other words, now we have proven that [math]\displaystyle{ (R_1 \cap R_2 \rightarrow R_1) \in F^+ }[/math].
References
- ↑ Pohler, K (2015). "Lossless-Join Decomposition: applications in quantitative computing metrics". International Journal of Applied Computer Science 21 (4): 190–212.
- ↑ "Lossless Join Property". https://stackoverflow.com/questions/5771810/lossless-join-property.
- ↑ "Lossless Join Decomposition". University at Buffalo (Jan Chomicki). http://www.cse.buffalo.edu/~chomicki/560/handout-design.pdf. Retrieved 2012-02-08.
- ↑ "Lossless-Join Decomposition". http://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/Chapter7/node7.html.
- ↑ "Archived copy". http://www.data-e-education.com/E121_Lossless_Join_Decomposition.html.