Lucas's theorem

From HandWiki

In number theory, Lucas's theorem expresses the remainder of division of the binomial coefficient [math]\displaystyle{ \tbinom{m}{n} }[/math] by a prime number p in terms of the base p expansions of the integers m and n.

Lucas's theorem first appeared in 1878 in papers by Édouard Lucas.[1]

Statement

For non-negative integers m and n and a prime p, the following congruence relation holds:

[math]\displaystyle{ \binom{m}{n}\equiv\prod_{i=0}^k\binom{m_i}{n_i}\pmod p, }[/math]

where

[math]\displaystyle{ m=m_kp^k+m_{k-1}p^{k-1}+\cdots +m_1p+m_0, }[/math]

and

[math]\displaystyle{ n=n_kp^k+n_{k-1}p^{k-1}+\cdots +n_1p+n_0 }[/math]

are the base p expansions of m and n respectively. This uses the convention that [math]\displaystyle{ \tbinom{m}{n} = 0 }[/math] if m < n.

Proofs

There are several ways to prove Lucas's theorem.

Consequences

  • A binomial coefficient [math]\displaystyle{ \tbinom{m}{n} }[/math] is divisible by a prime p if and only if at least one of the base p digits of n is greater than the corresponding digit of m.
  • In particular, [math]\displaystyle{ \tbinom{m}{n} }[/math] is odd if and only if the binary digits (bits) in the binary expansion of n are a subset of the bits of m.

Variations and generalizations

  • Kummer's theorem asserts that the largest integer k such that pk divides the binomial coefficient [math]\displaystyle{ \tbinom{m}{n} }[/math] (or in other words, the valuation of the binomial coefficient with respect to the prime p) is equal to the number of carries that occur when n and m − n are added in the base p.
  • Generalizations of Lucas's theorem to the case of p being a prime power are given by Davis and Webb (1990)[3] and Granville (1997).[4]
  • The q-Lucas theorem is a generalization for the q-binomial coefficients, first proved by J. Désarménien.[5]

References

  1. Fine, Nathan (1947). "Binomial coefficients modulo a prime". American Mathematical Monthly 54 (10): 589–592. doi:10.2307/2304500. 
  2. Kenneth S. Davis, William A. Webb (1990). "Lucas' Theorem for Prime Powers". European Journal of Combinatorics 11 (3): 229–233. doi:10.1016/S0195-6698(13)80122-9. 
  3. Andrew Granville (1997). "Arithmetic Properties of Binomial Coefficients I: Binomial coefficients modulo prime powers". Canadian Mathematical Society Conference Proceedings 20: 253–275. Archived from the original on 2017-02-02. https://web.archive.org/web/20170202003812/http://www.dms.umontreal.ca/~andrew/PDF/BinCoeff.pdf. 
  4. Désarménien, Jacques (March 1982). "Un Analogue des Congruences de Kummer pour les q-nombres d'Euler". European Journal of Combinatorics 3 (1): 19–28. doi:10.1016/S0195-6698(82)80005-X. 

External links

  • Lucas's Theorem at PlanetMath.org.
  • A. Laugier; M. P. Saikia (2012). "A new proof of Lucas' Theorem". Notes on Number Theory and Discrete Mathematics 18 (4): 1–6. http://nntdm.net/papers/nntdm-18/NNTDM-18-4-01-06.pdf. 
  • R. Meštrović (2014). "Lucas' theorem: its generalizations, extensions and applications (1878–2014)". arXiv:1409.3820 [math.NT].