Markovian arrival process
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP[1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed.[2][3]
The processes were first suggested by Marcel F. Neuts in 1979.[2][4]
Definition
A Markov arrival process is defined by two matrices, D0 and D1 where elements of D0 represent hidden transitions and elements of D1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.[5]
- [math]\displaystyle{ Q=\left[\begin{matrix} D_{0}&D_{1}&0&0&\dots\\ 0&D_{0}&D_{1}&0&\dots\\ 0&0&D_{0}&D_{1}&\dots\\ \vdots & \vdots & \ddots & \ddots & \ddots \end{matrix}\right]\; . }[/math]
The simplest example is a Poisson process where D0 = −λ and D1 = λ where there is only one possible transition, it is observable, and occurs at rate λ. For Q to be a valid transition rate matrix, the following restrictions apply to the Di
- [math]\displaystyle{ \begin{align} 0\leq [D_{1}]_{i,j}&\lt \infty \\ 0\leq [D_{0}]_{i,j}&\lt \infty \quad i\neq j \\ \, [D_{0}]_{i,i}&\lt 0 \\ (D_{0}+D_{1})\boldsymbol{1} &= \boldsymbol{0} \end{align} }[/math]
Special cases
Phase-type renewal process
The phase-type renewal process is a Markov arrival process with phase-type distributed sojourn between arrivals. For example, if an arrival process has an interarrival time distribution PH[math]\displaystyle{ (\boldsymbol{\alpha},S) }[/math] with an exit vector denoted [math]\displaystyle{ \boldsymbol{S}^{0}=-S\boldsymbol{1} }[/math], the arrival process has generator matrix,
- [math]\displaystyle{ Q=\left[\begin{matrix} S&\boldsymbol{S}^{0}\boldsymbol{\alpha}&0&0&\dots\\ 0&S&\boldsymbol{S}^{0}\boldsymbol{\alpha}&0&\dots\\ 0&0&S&\boldsymbol{S}^{0}\boldsymbol{\alpha}&\dots\\ \vdots&\vdots&\ddots&\ddots&\ddots\\ \end{matrix}\right] }[/math]
Generalizations
Batch Markov arrival process
The batch Markovian arrival process (BMAP) is a generalisation of the Markovian arrival process by allowing more than one arrival at a time.[6] [7] The homogeneous case has rate matrix,
- [math]\displaystyle{ Q=\left[\begin{matrix} D_{0}&D_{1}&D_{2}&D_{3}&\dots\\ 0&D_{0}&D_{1}&D_{2}&\dots\\ 0&0&D_{0}&D_{1}&\dots\\ \vdots & \vdots & \ddots & \ddots & \ddots \end{matrix}\right]\; . }[/math]
An arrival of size [math]\displaystyle{ k }[/math] occurs every time a transition occurs in the sub-matrix [math]\displaystyle{ D_{k} }[/math]. Sub-matrices [math]\displaystyle{ D_{k} }[/math] have elements of [math]\displaystyle{ \lambda_{i,j} }[/math], the rate of a Poisson process, such that,
- [math]\displaystyle{ 0\leq [D_{k}]_{i,j}\lt \infty\;\;\;\; 1\leq k }[/math]
- [math]\displaystyle{ 0\leq [D_{0}]_{i,j}\lt \infty\;\;\;\; i\neq j }[/math]
- [math]\displaystyle{ [D_{0}]_{i,i}\lt 0\; }[/math]
and
- [math]\displaystyle{ \sum^{\infty}_{k=0}D_{k}\boldsymbol{1}=\boldsymbol{0} }[/math]
Markov-modulated Poisson process
The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain.[8] If each of the m Poisson processes has rate λi and the modulating continuous-time Markov has m × m transition rate matrix R, then the MAP representation is
- [math]\displaystyle{ \begin{align} D_{1} &= \operatorname{diag}\{\lambda_{1},\dots,\lambda_{m}\}\\ D_{0} &=R-D_1. \end{align} }[/math]
Fitting
A MAP can be fitted using an expectation–maximization algorithm.[9]
Software
- KPC-toolbox a library of MATLAB scripts to fit a MAP to data.[10]
See also
References
- ↑ Asmussen, S. R. (2003). "Markov Additive Models". Applied Probability and Queues. Stochastic Modelling and Applied Probability. 51. pp. 302–339. doi:10.1007/0-387-21525-5_11. ISBN 978-0-387-00211-8.
- ↑ 2.0 2.1 Asmussen, S. (2000). "Matrix-analytic Models and their Analysis". Scandinavian Journal of Statistics 27 (2): 193–226. doi:10.1111/1467-9469.00186.
- ↑ Chakravarthy, S. R. (2011). "Markovian Arrival Processes". Wiley Encyclopedia of Operations Research and Management Science. doi:10.1002/9780470400531.eorms0499. ISBN 9780470400531.
- ↑ Neuts, Marcel F. (1979). "A Versatile Markovian Point Process". Journal of Applied Probability (Applied Probability Trust) 16 (4): 764–779. doi:10.2307/3213143.
- ↑ Casale, G. (2011). "Building accurate workload models using Markovian arrival processes". ACM SIGMETRICS Performance Evaluation Review 39: 357. doi:10.1145/2007116.2007176.
- ↑ Lucantoni, D. M. (1993). "The BMAP/G/1 queue: A tutorial". Performance Evaluation of Computer and Communication Systems. Lecture Notes in Computer Science. 729. pp. 330–358. doi:10.1007/BFb0013859. ISBN 3-540-57297-X.
- ↑ Singh, Gagandeep; Gupta, U. C.; Chaudhry, M. L. (2016). "Detailed computational analysis of queueing-time distributions of the BMAP/G/1 queue using roots". Journal of Applied Probability 53 (4): 1078–1097. doi:10.1017/jpr.2016.66. https://www.cambridge.org/core/journals/journal-of-applied-probability/article/abs/detailed-computational-analysis-of-queueingtime-distributions-of-the-bmapg1-queue-using-roots/740DBCF255AFE602075EDB174FF0F25D.
- ↑ Fischer, W.; Meier-Hellstern, K. (1993). "The Markov-modulated Poisson process (MMPP) cookbook". Performance Evaluation 18 (2): 149. doi:10.1016/0166-5316(93)90035-S.
- ↑ Buchholz, P. (2003). "An EM-Algorithm for MAP Fitting from Real Traffic Data". Computer Performance Evaluation. Modelling Techniques and Tools. Lecture Notes in Computer Science. 2794. pp. 218–236. doi:10.1007/978-3-540-45232-4_14. ISBN 978-3-540-40814-7.
- ↑ Casale, G.; Zhang, E. Z.; Smirni, E. (2008). "KPC-Toolbox: Simple Yet Effective Trace Fitting Using Markovian Arrival Processes". 2008 Fifth International Conference on Quantitative Evaluation of Systems. pp. 83. doi:10.1109/QEST.2008.33. ISBN 978-0-7695-3360-5. http://www.doc.ic.ac.uk/~gcasale/qest08kpctoolbox.pdf.
Original source: https://en.wikipedia.org/wiki/Markovian arrival process.
Read more |