Matsumoto zeta function
From HandWiki
In mathematics, Matsumoto zeta functions are a type of zeta function introduced by Kohji Matsumoto in 1990. They are functions of the form
- [math]\displaystyle{ \phi(s)=\prod_{p}\frac{1}{A_p(p^{-s})} }[/math]
where p is a prime and Ap is a polynomial.
References
- Matsumoto, Kohji (1990), "Value-distribution of zeta-functions", Analytic number theory ({T}okyo, 1988), Lecture Notes in Math., 1434, Berlin, New York: Springer-Verlag, pp. 178–187, doi:10.1007/BFb0097134, ISBN 978-3-540-52787-9
Original source: https://en.wikipedia.org/wiki/Matsumoto zeta function.
Read more |