Mayer f-function
The Mayer f-function is an auxiliary function that often appears in the series expansion of thermodynamic quantities related to classical many-particle systems.[1] It is named after chemist and physicist Joseph Edward Mayer.
Definition
Consider a system of classical particles interacting through a pair-wise potential
- [math]\displaystyle{ V(\mathbf{i},\mathbf{j}) }[/math]
where the bold labels [math]\displaystyle{ \mathbf{i} }[/math] and [math]\displaystyle{ \mathbf{j} }[/math] denote the continuous degrees of freedom associated with the particles, e.g.,
- [math]\displaystyle{ \mathbf{i}=\mathbf{r}_i }[/math]
for spherically symmetric particles and
- [math]\displaystyle{ \mathbf{i}=(\mathbf{r}_i,\Omega_i) }[/math]
for rigid non-spherical particles where [math]\displaystyle{ \mathbf{r} }[/math] denotes position and [math]\displaystyle{ \Omega }[/math] the orientation parametrized e.g. by Euler angles. The Mayer f-function is then defined as
- [math]\displaystyle{ f(\mathbf{i},\mathbf{j})=e^{-\beta V(\mathbf{i},\mathbf{j})}-1 }[/math]
where [math]\displaystyle{ \beta=(k_{B}T)^{-1} }[/math] the inverse absolute temperature in units of energy−1 .
See also
Notes
- ↑ Donald Allan McQuarrie, Statistical Mechanics (HarperCollins, 1976), page 228
Original source: https://en.wikipedia.org/wiki/Mayer f-function.
Read more |