McKay's approximation for the coefficient of variation

From HandWiki

In statistics, McKay's approximation of the coefficient of variation is a statistic based on a sample from a normally distributed population. It was introduced in 1932 by A. T. McKay.[1] Statistical methods for the coefficient of variation often utilizes McKay's approximation.[2][3][4][5] Let [math]\displaystyle{ x_i }[/math], [math]\displaystyle{ i = 1, 2,\ldots, n }[/math] be [math]\displaystyle{ n }[/math] independent observations from a [math]\displaystyle{ N(\mu, \sigma^2) }[/math] normal distribution. The population coefficient of variation is [math]\displaystyle{ c_v = \sigma / \mu }[/math]. Let [math]\displaystyle{ \bar{x} }[/math] and [math]\displaystyle{ s \, }[/math] denote the sample mean and the sample standard deviation, respectively. Then [math]\displaystyle{ \hat{c}_v = s/\bar{x} }[/math] is the sample coefficient of variation. McKay's approximation is

[math]\displaystyle{ K = \left( 1 + \frac{1}{c_v^2} \right) \ \frac{(n - 1) \ \hat{c}_v^2}{1 + (n - 1) \ \hat{c}_v^2/n} }[/math]

Note that in this expression, the first factor includes the population coefficient of variation, which is usually unknown. When [math]\displaystyle{ c_v }[/math] is smaller than 1/3, then [math]\displaystyle{ K }[/math] is approximately chi-square distributed with [math]\displaystyle{ n - 1 }[/math] degrees of freedom. In the original article by McKay, the expression for [math]\displaystyle{ K }[/math] looks slightly different, since McKay defined [math]\displaystyle{ \sigma^2 }[/math] with denominator [math]\displaystyle{ n }[/math] instead of [math]\displaystyle{ n - 1 }[/math]. McKay's approximation, [math]\displaystyle{ K }[/math], for the coefficient of variation is approximately chi-square distributed, but exactly noncentral beta distributed .[6]

References

  1. McKay, A. T. (1932). "Distribution of the coefficient of variation and the extended "t" distribution". Journal of the Royal Statistical Society 95: 695–698. doi:10.2307/2342041. 
  2. Iglevicz, Boris; Myers, Raymond (1970). "Comparisons of approximations to the percentage points of the sample coefficient of variation". Technometrics 12 (1): 166–169. doi:10.2307/1267363. 
  3. Bennett, B. M. (1976). "On an approximate test for homogeneity of coefficients of variation". Contributions to Applied Statistics Dedicated to A. Linder. Experentia Suppl 22: 169–171. 
  4. Vangel, Mark G. (1996). "Confidence intervals for a normal coefficient of variation". The American Statistician 50 (1): 21–26. doi:10.1080/00031305.1996.10473537. .
  5. Forkman, Johannes. "Estimator and tests for common coefficients of variation in normal distributions". pp. 21–26. doi:10.1080/03610920802187448. http://pub.epsilon.slu.se/4489/1/forkman_j_110214.pdf. 
  6. Forkman, Johannes; Verrill, Steve. "The distribution of McKay's approximation for the coefficient of variation". pp. 10–14. doi:10.1016/j.spl.2007.04.018. http://pub.epsilon.slu.se/3317/1/Forkman_Verrill_080610.pdf.