Meyer wavelet

From HandWiki
Spectrum of the Meyer wavelet (numerically computed).

The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer.[1] As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters,[2] fractal random fields,[3] and multi-fault classification.[4]

The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function ν as

Ψ(ω):={12πsin(π2ν(3|ω|2π1))ejω/2if 2π/3<|ω|<4π/3,12πcos(π2ν(3|ω|4π1))ejω/2if 4π/3<|ω|<8π/3,0otherwise,

where

ν(x):={0if x<0,xif 0<x<1,1if x>1.

There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet. For instance, another standard implementation adopts

ν(x):={x4(3584x+70x220x3)if 0<x<1,0otherwise.
Meyer scale function (numerically computed)

The Meyer scale function is given by

Φ(ω):={12πif |ω|<2π/3,12πcos(π2ν(3|ω|2π1))if 2π/3<|ω|<4π/3,0otherwise.

In the time domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure:

waveform of the Meyer wavelet (numerically computed)

Close expressions

Valenzuela and de Oliveira [5] give the explicit expressions of Meyer wavelet and scale functions:

ϕ(t)={23+43πt=0,sin(2π3t)+43tcos(4π3t)πt16π9t3otherwise,

and

ψ(t)=ψ1(t)+ψ2(t),

where

ψ1(t)=43π(t12)cos[2π3(t12)]1πsin[4π3(t12)](t12)169(t12)3,
ψ2(t)=83π(t12)cos[8π3(t12)]+1πsin[4π3(t12)](t12)649(t12)3.

References

  1. Meyer, Yves (1990). Ondelettes et opérateurs: Ondelettes. Hermann. ISBN 9782705661250. 
  2. Xu, L.; Zhang, D.; Wang, K. (2005). "Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms". IEEE Transactions on Biomedical Engineering 52 (11): 1973–1975. doi:10.1109/tbme.2005.856296. PMID 16285403. 
  3. Elliott, Jr., F. W.; Horntrop, D. J.; Majda, A. J. (1997). "A Fourier-Wavelet Monte Carlo method for fractal random fields". Journal of Computational Physics 132 (2): 384–408. doi:10.1006/jcph.1996.5647. Bibcode1997JCoPh.132..384E. 
  4. Abbasion, S. (2007). "Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine". Mechanical Systems and Signal Processing 21 (7): 2933–2945. doi:10.1016/j.ymssp.2007.02.003. Bibcode2007MSSP...21.2933A. 
  5. Valenzuela, Victor Vermehren; de Oliveira, H. M. (2015). "Close expressions for Meyer Wavelet and Scale Function". Anais de XXXIII Simpósio Brasileiro de Telecomunicações. p. 4. doi:10.14209/SBRT.2015.2.