Moduli stack of elliptic curves
In mathematics, the moduli stack of elliptic curves, denoted as [math]\displaystyle{ \mathcal{M}_{1,1} }[/math] or [math]\displaystyle{ \mathcal{M}_{\textrm{ell}} }[/math], is an algebraic stack over [math]\displaystyle{ \text{Spec}(\mathbb{Z}) }[/math] classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves [math]\displaystyle{ \mathcal{M}_{g,n} }[/math]. In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme [math]\displaystyle{ S }[/math] to it correspond to elliptic curves over [math]\displaystyle{ S }[/math]. The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed. All of these generalizations are contained in [math]\displaystyle{ \mathcal{M}_{1,1} }[/math].
Properties
Smooth Deligne-Mumford stack
The moduli stack of elliptic curves is a smooth separated Deligne–Mumford stack of finite type over [math]\displaystyle{ \text{Spec}(\mathbb{Z}) }[/math], but is not a scheme as elliptic curves have non-trivial automorphisms.
j-invariant
There is a proper morphism of [math]\displaystyle{ \mathcal{M}_{1,1} }[/math] to the affine line, the coarse moduli space of elliptic curves, given by the j-invariant of an elliptic curve.
Construction over the complex numbers
It is a classical observation that every elliptic curve over [math]\displaystyle{ \mathbb{C} }[/math] is classified by its periods. Given a basis for its integral homology [math]\displaystyle{ \alpha,\beta \in H_1(E,\mathbb{Z}) }[/math] and a global holomorphic differential form [math]\displaystyle{ \omega \in \Gamma(E,\Omega^1_E) }[/math] (which exists since it is smooth and the dimension of the space of such differentials is equal to the genus, 1), the integrals[math]\displaystyle{ \begin{bmatrix}\int_\alpha \omega & \int_\beta\omega \end{bmatrix} = \begin{bmatrix}\omega_1 & \omega_2 \end{bmatrix} }[/math]give the generators for a [math]\displaystyle{ \mathbb{Z} }[/math]-lattice of rank 2 inside of [math]\displaystyle{ \mathbb{C} }[/math][1] pg 158. Conversely, given an integral lattice [math]\displaystyle{ \Lambda }[/math] of rank [math]\displaystyle{ 2 }[/math] inside of [math]\displaystyle{ \mathbb{C} }[/math], there is an embedding of the complex torus [math]\displaystyle{ E_\Lambda = \mathbb{C}/\Lambda }[/math] into [math]\displaystyle{ \mathbb{P}^2 }[/math] from the Weierstrass P function[1] pg 165. This isomorphic correspondence [math]\displaystyle{ \phi:\mathbb{C}/\Lambda \to E(\mathbb{C}) }[/math] is given by[math]\displaystyle{ z \mapsto [\wp(z,\Lambda),\wp'(z,\Lambda),1] \in \mathbb{P}^2(\mathbb{C}) }[/math]and holds up to homothety of the lattice [math]\displaystyle{ \Lambda }[/math], which is the equivalence relation[math]\displaystyle{ z\Lambda \sim \Lambda ~\text{for}~ z \in \mathbb{C} \setminus\{0\} }[/math]It is standard to then write the lattice in the form [math]\displaystyle{ \mathbb{Z}\oplus\mathbb{Z}\cdot \tau }[/math] for [math]\displaystyle{ \tau \in \mathfrak{h} }[/math], an element of the upper half-plane, since the lattice [math]\displaystyle{ \Lambda }[/math] could be multiplied by [math]\displaystyle{ \omega_1^{-1} }[/math], and [math]\displaystyle{ \tau,-\tau }[/math] both generate the same sublattice. Then, the upper half-plane gives a parameter space of all elliptic curves over [math]\displaystyle{ \mathbb{C} }[/math]. There is an additional equivalence of curves given by the action of the[math]\displaystyle{ \text{SL}_2(\mathbb{Z})= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Mat}_{2,2}(\mathbb{Z}) : ad-bc = 1 \right\} }[/math]where an elliptic curve defined by the lattice [math]\displaystyle{ \mathbb{Z}\oplus\mathbb{Z}\cdot \tau }[/math] is isomorphic to curves defined by the lattice [math]\displaystyle{ \mathbb{Z}\oplus\mathbb{Z}\cdot \tau' }[/math] given by the modular action[math]\displaystyle{ \begin{align} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau &= \frac{a\tau + b}{c\tau + d} \\ &= \tau' \end{align} }[/math]Then, the moduli stack of elliptic curves over [math]\displaystyle{ \mathbb{C} }[/math] is given by the stack quotient[math]\displaystyle{ \mathcal{M}_{1,1} \cong[\text{SL}_2(\mathbb{Z})\backslash\mathfrak{h}] }[/math]Note some authors construct this moduli space by instead using the action of the Modular group [math]\displaystyle{ \text{PSL}_2(\mathbb{Z}) = \text{SL}_2(\mathbb{Z})/\{\pm I\} }[/math]. In this case, the points in [math]\displaystyle{ \mathcal{M}_{1,1} }[/math] having only trivial stabilizers are dense.
[math]\displaystyle{ \qquad }[/math]
Stacky/Orbifold points
Generically, the points in [math]\displaystyle{ \mathcal{M}_{1,1} }[/math] are isomorphic to the classifying stack [math]\displaystyle{ B(\mathbb{Z}/2) }[/math] since every elliptic curve corresponds to a double cover of [math]\displaystyle{ \mathbb{P}^1 }[/math], so the [math]\displaystyle{ \mathbb{Z}/2 }[/math]-action on the point corresponds to the involution of these two branches of the covering. There are a few special points[2] pg 10-11 corresponding to elliptic curves with [math]\displaystyle{ j }[/math]-invariant equal to [math]\displaystyle{ 1728 }[/math] and [math]\displaystyle{ 0 }[/math] where the automorphism groups are of order 4, 6, respectively[3] pg 170. One point in the Fundamental domain with stabilizer of order [math]\displaystyle{ 4 }[/math] corresponds to [math]\displaystyle{ \tau = i }[/math], and the points corresponding to the stabilizer of order [math]\displaystyle{ 6 }[/math] correspond to [math]\displaystyle{ \tau = e^{2\pi i / 3}, e^{\pi i / 3} }[/math][4]pg 78.
Representing involutions of plane curves
Given a plane curve by its Weierstrass equation[math]\displaystyle{ y^2 = x^3 + ax + b }[/math]and a solution [math]\displaystyle{ (t,s) }[/math], generically for j-invariant [math]\displaystyle{ j \neq 0,1728 }[/math], there is the [math]\displaystyle{ \mathbb{Z}/2 }[/math]-involution sending [math]\displaystyle{ (t,s)\mapsto (t,-s) }[/math]. In the special case of a curve with complex multiplication[math]\displaystyle{ y^2 = x^3 + ax }[/math]there the [math]\displaystyle{ \mathbb{Z}/4 }[/math]-involution sending [math]\displaystyle{ (t,s)\mapsto (-t,\sqrt{-1}\cdot s) }[/math]. The other special case is when [math]\displaystyle{ a = 0 }[/math], so a curve of the form[math]\displaystyle{ y^2 = x^3 + b }[/math] there is the [math]\displaystyle{ \mathbb{Z}/6 }[/math]-involution sending [math]\displaystyle{ (t,s) \mapsto (\zeta_3 t,-s) }[/math] where [math]\displaystyle{ \zeta_3 }[/math] is the third root of unity [math]\displaystyle{ e^{2\pi i / 3} }[/math].
Fundamental domain and visualization
There is a subset of the upper-half plane called the Fundamental domain which contains every isomorphism class of elliptic curves. It is the subset[math]\displaystyle{ D = \{z \in \mathfrak{h} : |z| \geq 1 \text{ and } \text{Re}(z) \leq 1/2 \} }[/math]It is useful to consider this space because it helps visualize the stack [math]\displaystyle{ \mathcal{M}_{1,1} }[/math]. From the quotient map[math]\displaystyle{ \mathfrak{h} \to \text{SL}_2(\mathbb{Z})\backslash \mathfrak{h} }[/math]the image of [math]\displaystyle{ D }[/math] is surjective and its interior is injective[4]pg 78. Also, the points on the boundary can be identified with their mirror image under the involution sending [math]\displaystyle{ \text{Re}(z) \mapsto -\text{Re}(z) }[/math], so [math]\displaystyle{ \mathcal{M}_{1,1} }[/math] can be visualized as the projective curve [math]\displaystyle{ \mathbb{P}^1 }[/math] with a point removed at infinity[5]pg 52.
Line bundles and modular functions
There are line bundles [math]\displaystyle{ \mathcal{L}^{\otimes k} }[/math] over the moduli stack [math]\displaystyle{ \mathcal{M}_{1,1} }[/math] whose sections correspond to modular functions [math]\displaystyle{ f }[/math] on the upper-half plane [math]\displaystyle{ \mathfrak{h} }[/math]. On [math]\displaystyle{ \mathbb{C}\times\mathfrak{h} }[/math] there are [math]\displaystyle{ \text{SL}_2(\mathbb{Z}) }[/math]-actions compatible with the action on [math]\displaystyle{ \mathfrak{h} }[/math] given by[math]\displaystyle{ \text{SL}_2(\mathbb{Z}) \times {\displaystyle \mathbb {C} \times {\mathfrak {h}}} \to {\displaystyle \mathbb {C} \times {\mathfrak {h}}} }[/math]The degree [math]\displaystyle{ k }[/math] action is given by[math]\displaystyle{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : (z,\tau ) \mapsto \left( (c\tau + d)^kz, \frac{a\tau + b}{c\tau + d} \right) }[/math]hence the trivial line bundle [math]\displaystyle{ \mathbb{C}\times\mathfrak{h} \to \mathfrak{h} }[/math] with the degree [math]\displaystyle{ k }[/math] action descends to a unique line bundle denoted [math]\displaystyle{ \mathcal{L}^{\otimes k} }[/math]. Notice the action on the factor [math]\displaystyle{ \mathbb{C} }[/math] is a representation of [math]\displaystyle{ \text{SL}_2(\mathbb{Z}) }[/math] on [math]\displaystyle{ \mathbb{Z} }[/math] hence such representations can be tensored together, showing [math]\displaystyle{ \mathcal{L}^{\otimes k} \otimes \mathcal{L}^{\otimes l} \cong \mathcal{L}^{\otimes (k + l)} }[/math]. The sections of [math]\displaystyle{ \mathcal{L}^{\otimes k} }[/math] are then functions sections [math]\displaystyle{ f \in \Gamma(\mathbb{C}\times \mathfrak{h}) }[/math] compatible with the action of [math]\displaystyle{ \text{SL}_2(\mathbb{Z}) }[/math], or equivalently, functions [math]\displaystyle{ f:\mathfrak{h} \to \mathbb{C} }[/math] such that[math]\displaystyle{ f\left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau \right) = (c\tau + d)^kf(\tau) }[/math] This is exactly the condition for a holomorphic function to be modular.
Modular forms
The modular forms are the modular functions which can be extended to the compactification[math]\displaystyle{ \overline{\mathcal{L}^{\otimes k}} \to \overline{\mathcal{M}}_{1,1} }[/math]this is because in order to compactify the stack [math]\displaystyle{ \mathcal{M}_{1,1} }[/math], a point at infinity must be added, which is done through a gluing process by gluing the [math]\displaystyle{ q }[/math]-disk (where a modular function has its [math]\displaystyle{ q }[/math]-expansion)[2]pgs 29-33.
Universal curves
Constructing the universal curves [math]\displaystyle{ \mathcal{E} \to \mathcal{M}_{1,1} }[/math] is a two step process: (1) construct a versal curve [math]\displaystyle{ \mathcal{E}_{\mathfrak{h}} \to \mathfrak{h} }[/math] and then (2) show this behaves well with respect to the [math]\displaystyle{ \text{SL}_2(\mathbb{Z}) }[/math]-action on [math]\displaystyle{ \mathfrak{h} }[/math]. Combining these two actions together yields the quotient stack[math]\displaystyle{ [(\text{SL}_2(\mathbb{Z}) \ltimes \mathbb{Z}^2 )\backslash \mathbb{C}\times\mathfrak{h}] }[/math]
Versal curve
Every rank 2 [math]\displaystyle{ \mathbb{Z} }[/math]-lattice in [math]\displaystyle{ \mathbb{C} }[/math] induces a canonical [math]\displaystyle{ \mathbb{Z}^{2} }[/math]-action on [math]\displaystyle{ \mathbb{C} }[/math]. As before, since every lattice is homothetic to a lattice of the form [math]\displaystyle{ (1,\tau) }[/math] then the action [math]\displaystyle{ (m,n) }[/math] sends a point [math]\displaystyle{ z \in \mathbb{C} }[/math] to[math]\displaystyle{ (m ,n)\cdot z \mapsto z + m\cdot 1 + n\cdot\tau }[/math]Because the [math]\displaystyle{ \tau }[/math] in [math]\displaystyle{ \mathfrak{h} }[/math] can vary in this action, there is an induced [math]\displaystyle{ \mathbb{Z}^{2} }[/math]-action on [math]\displaystyle{ \mathbb{C}\times\mathfrak{h} }[/math][math]\displaystyle{ (m ,n)\cdot (z, \tau) \mapsto (z + m\cdot 1 + n\cdot\tau, \tau) }[/math]giving the quotient space[math]\displaystyle{ \mathcal{E}_\mathfrak{h} \to \mathfrak{h} }[/math]by projecting onto [math]\displaystyle{ \mathfrak{h} }[/math].
SL2-action on Z2
There is a [math]\displaystyle{ \text{SL}_2(\mathbb{Z}) }[/math]-action on [math]\displaystyle{ \mathbb{Z}^{2} }[/math] which is compatible with the action on [math]\displaystyle{ \mathfrak{h} }[/math], meaning given a point [math]\displaystyle{ z \in \mathfrak{h} }[/math] and a [math]\displaystyle{ g \in \text{SL}_2(\mathbb{Z}) }[/math], the new lattice [math]\displaystyle{ g\cdot z }[/math] and an induced action from [math]\displaystyle{ \mathbb{Z}^2 \cdot g }[/math], which behaves as expected. This action is given by[math]\displaystyle{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : (m, n) \mapsto (m,n)\cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} }[/math]which is matrix multiplication on the right, so[math]\displaystyle{ (m,n)\cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ( am + cn, bm + dn ) }[/math]
See also
- Fundamental domain
- Homothety
- Level structure (algebraic geometry)
- Moduli of abelian varieties
- Shimura variety
- Modular curve
- Elliptic cohomology
References
- ↑ 1.0 1.1 Silverman, Joseph H. (2009). The arithmetic of elliptic curves (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-09494-6. OCLC 405546184.
- ↑ 2.0 2.1 Hain, Richard (2014-03-25). "Lectures on Moduli Spaces of Elliptic Curves". arXiv:0812.1803 [math.AG].
- ↑ Galbraith, Steven. "Elliptic Curves". Mathematics of Public Key Cryptography. Cambridge University Press. https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch9.pdf.
- ↑ 4.0 4.1 Serre, Jean-Pierre (1973). A Course in Arithmetic. New York: Springer New York. ISBN 978-1-4684-9884-4. OCLC 853266550.
- ↑ Henriques, André G. "The Moduli stack of elliptic curves". in Douglas, Christopher L.. Topological modular forms. Providence, Rhode Island. ISBN 978-1-4704-1884-7. OCLC 884782304. https://www.math.ucla.edu/~mikehill/Research/surv-douglas2-201.pdf.
- Hain, Richard (2008), Lectures on Moduli Spaces of Elliptic Curves, Bibcode: 2008arXiv0812.1803H
- Lurie, Jacob (2009), A survey of elliptic cohomology, http://www.math.harvard.edu/~lurie/papers/survey.pdf
- Olsson, Martin (2016), Algebraic spaces and stacks, Colloquium Publications, 62, American Mathematical Society, ISBN 978-1470427986
External links
- moduli+stack+of+elliptic+curves in nLab
- "The moduli stack of elliptic curves", Stacks project, http://stacks.math.columbia.edu/tag/072K
Original source: https://en.wikipedia.org/wiki/Moduli stack of elliptic curves.
Read more |