Multiplicatively closed set

From HandWiki

In abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold:[1][2]

  • [math]\displaystyle{ 1 \in S }[/math],
  • [math]\displaystyle{ xy \in S }[/math] for all [math]\displaystyle{ x, y \in S }[/math].

In other words, S is closed under taking finite products, including the empty product 1.[3] Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring.

Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings.

A subset S of a ring R is called saturated if it is closed under taking divisors: i.e., whenever a product xy is in S, the elements x and y are in S too.

Examples

Examples of multiplicative sets include:

Properties

  • An ideal P of a commutative ring R is prime if and only if its complement R \ P is multiplicatively closed.
  • A subset S is both saturated and multiplicatively closed if and only if S is the complement of a union of prime ideals.[4] In particular, the complement of a prime ideal is both saturated and multiplicatively closed.
  • The intersection of a family of multiplicative sets is a multiplicative set.
  • The intersection of a family of saturated sets is saturated.

See also

Notes

  1. Atiyah and Macdonald, p. 36.
  2. Lang, p. 107.
  3. Eisenbud, p. 59.
  4. Kaplansky, p. 2, Theorem 2.

References