Narumi polynomials
From HandWiki
In mathematics, the Narumi polynomials sn(x) are polynomials introduced by (Narumi 1929) given by the generating function
- [math]\displaystyle{ \displaystyle \sum s_n(x)t^n/n! = \left(\frac{t}{\log(1+t)}\right)^a(1+t)^x }[/math]
(Roman 1984), (Boas Buck)
See also
References
- Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge., 19, Berlin, New York: Springer-Verlag, ISBN 9783540031239, https://books.google.com/books?id=eihMuwkh4DsC
- Narumi, S. (1929), "On a power series having only a finite number of algebraico logarithmic singularities on its circle of convergence.", Tohoku Mathematical Journal 30: 185–201, http://www.journalarchive.jst.go.jp/english/jnlabstract_en.php?cdjournal=tmj1911&cdvol=30&noissue=0&startpage=185
- Roman, Steven (1984), The umbral calculus, Pure and Applied Mathematics, 111, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-594380-2, https://books.google.com/books?id=JpHjkhFLfpgC Reprinted by Dover, 2005
Original source: https://en.wikipedia.org/wiki/Narumi polynomials.
Read more |