Neumann polynomial

From HandWiki

In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case α=0, are a sequence of polynomials in 1/t used to expand functions in term of Bessel functions.[1] The first few polynomials are

O0(α)(t)=1t,
O1(α)(t)=2α+1t2,
O2(α)(t)=2+αt+4(2+α)(1+α)t3,
O3(α)(t)=2(1+α)(3+α)t2+8(1+α)(2+α)(3+α)t4,
O4(α)(t)=(1+α)(4+α)2t+4(1+α)(2+α)(4+α)t3+16(1+α)(2+α)(3+α)(4+α)t5.

A general form for the polynomial is

On(α)(t)=α+n2αk=0n/2(1)nk(nk)!k!(αnk)(2t)n+12k,

and they have the "generating function"

(z2)αΓ(α+1)1tz=n=0On(α)(t)Jα+n(z),

where J are Bessel functions.

To expand a function f in the form

f(z)=n=0anJα+n(z)

for |z|<c, compute

an=12πi|z|=cΓ(α+1)(z2)αf(z)On(α)(z)dz,

where c<c and c is the distance of the nearest singularity of zαf(z) from z=0.

Examples

An example is the extension

(12z)s=Γ(s)k=0(1)kJs+2k(z)(s+2k)(sk),

or the more general Sonine formula[2]

eiγz=Γ(s)k=0ikCk(s)(γ)(s+k)Js+k(z)(z2)s.

where Ck(s) is Gegenbauer's polynomial. Then,[citation needed][original research?]

(z2)2k(2k1)!Js(z)=i=k(1)ik(i+k12k1)(i+k+s12k1)(s+2i)Js+2i(z),
n=0tnJs+n(z)=etz2tsj=0(z2t)jj!γ(j+s,tz2)Γ(j+s)=0ezx22tzxtJs(z1x2)1x2sdx,

the confluent hypergeometric function

M(a,s,z)=Γ(s)k=0(1t)kLk(ak)(t)Js+k1(2tz)(tz)sk1,

and in particular

Js(2z)zs=4sΓ(s+12)πe2izk=0Lk(s1/2k)(it4)(4iz)kJ2s+k(2tz)tz2s+k,

the index shift formula

Γ(νμ)Jν(z)=Γ(μ+1)n=0Γ(νμ+n)n!Γ(ν+n+1)(z2)νμ+nJμ+n(z),

the Taylor expansion (addition formula)

Js(z22uz)(z22uz)±s=k=0(±u)kk!Js±k(z)z±s,

(cf.[3][failed verification]) and the expansion of the integral of the Bessel function,

Js(z)dz=2k=0Js+2k+1(z),

are of the same type.

See also

Notes

  1. Abramowitz and Stegun, p. 363, 9.1.82 ff.
  2. Erdélyi et al. 1955 II.7.10.1, p.64
  3. "8.515.1." (in English). Table of Integrals, Series, and Products (8 ed.). Academic Press, Inc.. 2015. p. 944. ISBN 0-12-384933-0.