Neumann polynomial
In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case [math]\displaystyle{ \alpha=0 }[/math], are a sequence of polynomials in [math]\displaystyle{ 1/t }[/math] used to expand functions in term of Bessel functions.[1] The first few polynomials are
- [math]\displaystyle{ O_0^{(\alpha)}(t)=\frac 1 t, }[/math]
- [math]\displaystyle{ O_1^{(\alpha)}(t)=2\frac {\alpha+1}{t^2}, }[/math]
- [math]\displaystyle{ O_2^{(\alpha)}(t)=\frac {2+\alpha}{t}+ 4\frac {(2+\alpha)(1+\alpha)}{t^3}, }[/math]
- [math]\displaystyle{ O_3^{(\alpha)}(t)=2\frac {(1+\alpha)(3+\alpha)}{t^2}+ 8\frac {(1+\alpha)(2+\alpha)(3+\alpha)}{t^4}, }[/math]
- [math]\displaystyle{ O_4^{(\alpha)}(t)=\frac {(1+\alpha)(4+\alpha)}{2t}+ 4\frac {(1+\alpha)(2+\alpha)(4+\alpha)}{t^3}+ 16\frac {(1+\alpha)(2+\alpha)(3+\alpha)(4+\alpha)}{t^5}. }[/math]
A general form for the polynomial is
- [math]\displaystyle{ O_n^{(\alpha)}(t)= \frac{\alpha+n}{2\alpha} \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^{n-k}\frac {(n-k)!} {k!} {-\alpha \choose n-k}\left(\frac 2 t \right)^{n+1-2k}, }[/math]
and they have the "generating function"
- [math]\displaystyle{ \frac{\left(\frac z 2 \right)^\alpha} {\Gamma(\alpha+1)} \frac 1 {t-z}= \sum_{n=0}O_n^{(\alpha)}(t) J_{\alpha+n}(z), }[/math]
where J are Bessel functions.
To expand a function f in the form
- [math]\displaystyle{ f(z)=\sum_{n=0} a_n J_{\alpha+n}(z)\, }[/math]
for [math]\displaystyle{ |z|\lt c }[/math], compute
- [math]\displaystyle{ a_n=\frac 1 {2 \pi i} \oint_{|z|=c'} \frac{\Gamma(\alpha+1)}{\left(\frac z 2\right)^\alpha}f(z) O_n^{(\alpha)}(z)\,dz, }[/math]
where [math]\displaystyle{ c'\lt c }[/math] and c is the distance of the nearest singularity of [math]\displaystyle{ z^{-\alpha} f(z) }[/math] from [math]\displaystyle{ z=0 }[/math].
Examples
An example is the extension
- [math]\displaystyle{ \left(\tfrac{1}{2}z\right)^s= \Gamma(s)\cdot\sum_{k=0}(-1)^k J_{s+2k}(z)(s+2k){-s \choose k}, }[/math]
or the more general Sonine formula[2]
- [math]\displaystyle{ e^{i \gamma z}= \Gamma(s)\cdot\sum_{k=0}i^k C_k^{(s)}(\gamma)(s+k)\frac{J_{s+k}(z)}{\left(\frac z 2\right)^s}. }[/math]
where [math]\displaystyle{ C_k^{(s)} }[/math] is Gegenbauer's polynomial. Then,[citation needed][original research?]
- [math]\displaystyle{ \frac{\left(\frac z 2\right)^{2k}}{(2k-1)!}J_s(z)= \sum_{i=k}(-1)^{i-k}{i+k-1\choose 2k-1}{i+k+s-1\choose 2k-1}(s+2i)J_{s+2i}(z), }[/math]
- [math]\displaystyle{ \sum_{n=0} t^n J_{s+n}(z)= \frac{e^{\frac{t z}2}}{t^s} \sum_{j=0}\frac{\left(-\frac{z}{2t}\right)^j}{j!}\frac{\gamma \left(j+s,\frac{t z}{2}\right)}{\,\Gamma (j+s)}= \int_0^\infty e^{-\frac{z x^2}{2 t}}\frac {z x}{t} \frac{J_s(z\sqrt{1-x^2})}{\sqrt{1-x^2}^s}\,dx, }[/math]
the confluent hypergeometric function
- [math]\displaystyle{ M(a,s,z)= \Gamma (s) \sum_{k=0}^\infty \left(-\frac{1}{t}\right)^k L_k^{(-a-k)}(t) \frac{J_{s+k-1}\left(2 \sqrt{t z}\right)}{(\sqrt{t z})^{s-k-1}}, }[/math]
and in particular
- [math]\displaystyle{ \frac{J_s(2 z)}{z^s}= \frac{4^s \Gamma\left(s+\frac12\right)}{\sqrt\pi}e^{2 i z}\sum_{k=0}L_k^{(-s-1/2-k)}\left(\frac{it}4\right)(4 i z)^k \frac{J_{2s+k}\left(2\sqrt{t z}\right)}{\sqrt{t z}^{2s+k}}, }[/math]
the index shift formula
- [math]\displaystyle{ \Gamma(\nu-\mu) J_\nu(z)= \Gamma(\mu+1) \sum_{n=0}\frac{\Gamma(\nu-\mu+n)}{n!\Gamma(\nu+n+1)} \left(\frac z 2\right)^{\nu-\mu+n}J_{\mu+n}(z), }[/math]
the Taylor expansion (addition formula)
- [math]\displaystyle{ \frac{J_s\left(\sqrt{z^2-2uz}\right)}{\left(\sqrt{z^2-2uz}\right)^{\pm s}}= \sum_{k=0}\frac{(\pm u)^k}{k!}\frac{J_{s\pm k}(z)}{z^{\pm s}}, }[/math]
(cf.[3][failed verification]) and the expansion of the integral of the Bessel function,
- [math]\displaystyle{ \int J_s(z)dz= 2 \sum_{k=0} J_{s+2k+1}(z), }[/math]
are of the same type.
See also
- Bessel function
- Bessel polynomial
- Lommel polynomial
- Hankel transform
- Fourier–Bessel series
- Schläfli-polynomial
Notes
- ↑ Abramowitz and Stegun, p. 363, 9.1.82 ff.
- ↑ Erdélyi et al. 1955 II.7.10.1, p.64
- ↑ "8.515.1." (in English). Table of Integrals, Series, and Products (8 ed.). Academic Press, Inc.. 2015. p. 944. ISBN 0-12-384933-0.
Original source: https://en.wikipedia.org/wiki/Neumann polynomial.
Read more |