Nevanlinna–Pick interpolation

From HandWiki

In complex analysis, given initial data consisting of [math]\displaystyle{ n }[/math] points [math]\displaystyle{ \lambda_1, \ldots, \lambda_n }[/math] in the complex unit disc [math]\displaystyle{ \mathbb{D} }[/math] and target data consisting of [math]\displaystyle{ n }[/math] points [math]\displaystyle{ z_1, \ldots, z_n }[/math] in [math]\displaystyle{ \mathbb{D} }[/math], the Nevanlinna–Pick interpolation problem is to find a holomorphic function [math]\displaystyle{ \varphi }[/math] that interpolates the data, that is for all [math]\displaystyle{ i \in \{1,...,n\} }[/math],

[math]\displaystyle{ \varphi(\lambda_i) = z_i }[/math],

subject to the constraint [math]\displaystyle{ \left\vert \varphi(\lambda) \right\vert \le 1 }[/math] for all [math]\displaystyle{ \lambda \in \mathbb{D} }[/math].

Georg Pick and Rolf Nevanlinna solved the problem independently in 1916 and 1919 respectively, showing that an interpolating function exists if and only if a matrix defined in terms of the initial and target data is positive semi-definite.

Background

The Nevanlinna–Pick theorem represents an [math]\displaystyle{ n }[/math]-point generalization of the Schwarz lemma. The invariant form of the Schwarz lemma states that for a holomorphic function [math]\displaystyle{ f:\mathbb{D}\to\mathbb{D} }[/math], for all [math]\displaystyle{ \lambda_1, \lambda_2 \in \mathbb{D} }[/math],

[math]\displaystyle{ \left|\frac{f(\lambda_1) - f(\lambda_2)}{1 - \overline{f(\lambda_2)}f(\lambda_1)}\right| \leq \left|\frac{\lambda_1 - \lambda_2}{1 - \overline{\lambda_2}\lambda_1}\right|. }[/math]

Setting [math]\displaystyle{ f(\lambda_i)=z_i }[/math], this inequality is equivalent to the statement that the matrix given by

[math]\displaystyle{ \begin{bmatrix} \frac{1 - |z_1|^2}{1 - |\lambda_1|^2} & \frac{1 - \overline{z_1}z_2}{1 - \overline{\lambda_1}\lambda_2} \\[5pt] \frac{1 - \overline{z_2}z_1}{1 - \overline{\lambda_2}\lambda_1} & \frac{1 - |z_2|^2}{1 - |\lambda_2|^2} \end{bmatrix} \geq 0, }[/math]

that is the Pick matrix is positive semidefinite.

Combined with the Schwarz lemma, this leads to the observation that for [math]\displaystyle{ \lambda_1, \lambda_2, z_1, z_2 \in \mathbb{D} }[/math], there exists a holomorphic function [math]\displaystyle{ \varphi:\mathbb{D} \to \mathbb{D} }[/math] such that [math]\displaystyle{ \varphi(\lambda_1) = z_1 }[/math] and [math]\displaystyle{ \varphi(\lambda_2)=z_2 }[/math] if and only if the Pick matrix

[math]\displaystyle{ \left(\frac{1 - \overline{z_j}z_i}{1 - \overline{\lambda_j}\lambda_i}\right)_{i,j = 1, 2} \geq 0. }[/math]

The Nevanlinna–Pick theorem

The Nevanlinna–Pick theorem states the following. Given [math]\displaystyle{ \lambda_1, \ldots, \lambda_n, z_1, \ldots, z_n \in \mathbb{D} }[/math], there exists a holomorphic function [math]\displaystyle{ \varphi:\mathbb{D} \to \overline{\mathbb{D}} }[/math] such that [math]\displaystyle{ \varphi(\lambda_i) = z_i }[/math] if and only if the Pick matrix

[math]\displaystyle{ \left( \frac{1-\overline{z_j} z_i}{1-\overline{\lambda_j} \lambda_i} \right)_{i,j=1}^n }[/math]

is positive semi-definite. Furthermore, the function [math]\displaystyle{ \varphi }[/math] is unique if and only if the Pick matrix has zero determinant. In this case, [math]\displaystyle{ \varphi }[/math] is a Blaschke product, with degree equal to the rank of the Pick matrix (except in the trivial case where all the [math]\displaystyle{ z_i }[/math]'s are the same).

Generalisation

The generalization of the Nevanlinna–Pick theorem became an area of active research in operator theory following the work of Donald Sarason on the Sarason interpolation theorem.[1] Sarason gave a new proof of the Nevanlinna–Pick theorem using Hilbert space methods in terms of operator contractions. Other approaches were developed in the work of L. de Branges, and B. Sz.-Nagy and C. Foias.

It can be shown that the Hardy space H 2 is a reproducing kernel Hilbert space, and that its reproducing kernel (known as the Szegő kernel) is

[math]\displaystyle{ K(a,b)=\left(1-b \bar{a} \right)^{-1}.\, }[/math]

Because of this, the Pick matrix can be rewritten as

[math]\displaystyle{ \left( (1-z_i \overline{z_j}) K(\lambda_j,\lambda_i)\right)_{i,j=1}^N.\, }[/math]

This description of the solution has motivated various attempts to generalise Nevanlinna and Pick's result.

The Nevanlinna–Pick problem can be generalised to that of finding a holomorphic function [math]\displaystyle{ f:R\to\mathbb{D} }[/math] that interpolates a given set of data, where R is now an arbitrary region of the complex plane.

M. B. Abrahamse showed that if the boundary of R consists of finitely many analytic curves (say n + 1), then an interpolating function f exists if and only if

[math]\displaystyle{ \left( (1-z_i \overline{z_j}) K_\tau (\lambda_j,\lambda_i)\right)_{i,j=1}^N\, }[/math]

is a positive semi-definite matrix, for all [math]\displaystyle{ \tau }[/math] in the n-torus. Here, the [math]\displaystyle{ K_\tau }[/math]s are the reproducing kernels corresponding to a particular set of reproducing kernel Hilbert spaces, which are related to the set R. It can also be shown that f is unique if and only if one of the Pick matrices has zero determinant.

Notes

  • Pick's original proof concerned functions with positive real part. Under a linear fractional Cayley transform, his result holds on maps from the disc to the disc.
  • Pick–Nevanlinna interpolation was introduced into robust control by Allen Tannenbaum.
  • The Pick-Nevanlinna problem for holomorphic maps from the bidisk [math]\displaystyle{ \mathbb{D}^2 }[/math] to the disk was solved by Jim Agler.

References

  1. Sarason, Donald (1967). "Generalized Interpolation in [math]\displaystyle{ H^\infty }[/math]". Trans. Amer. Math. Soc. 127: 179–203. doi:10.1090/s0002-9947-1967-0208383-8.