Nodal surface
From HandWiki
In algebraic geometry, a nodal surface is a surface in (usually complex) projective space whose only singularities are nodes. A major problem about them is to find the maximum number of nodes of a nodal surface of given degree.
The following table gives some known upper and lower bounds for the maximal number of nodes on a complex surface of given degree. In degree 7, 9, 11, and 13, the upper bound is given by (Varchenko 1983), which is better than the one by (Miyaoka 1984).
Degree | Lower bound | Surface achieving lower bound | Upper bound |
---|---|---|---|
1 | 0 | Plane | 0 |
2 | 1 | Conical surface | 1 |
3 | 4 | Cayley's nodal cubic surface | 4 |
4 | 16 | Kummer surface | 16 |
5 | 31 | Togliatti surface | 31 (Beauville) |
6 | 65 | Barth sextic | 65 (Jaffe and Ruberman) |
7 | 99 | Labs septic | 104 |
8 | 168 | Endraß surface | 174 |
9 | 226 | Labs | 246 |
10 | 345 | Barth decic | 360 |
11 | 425 | Chmutov | 480 |
12 | 600 | Sarti surface | 645 |
13 | 732 | Chmutov | 829 |
d | [math]\displaystyle{ \tfrac49 d (d-1)^2 }[/math] (Miyaoka 1984) | ||
d ≡ 0 (mod 3) | [math]\displaystyle{ \tbinom d2 \lfloor \tfrac d2 \rfloor + (\tfrac{d^2}3 - d + 1)\lfloor\tfrac{d-1}2\rfloor }[/math] | Escudero | |
d ≡ ±1 (mod 6) | [math]\displaystyle{ (5d^3 - 14d^2 + 13d - 4)/12 }[/math] | Chmutov | |
d ≡ ±2 (mod 6) | [math]\displaystyle{ (5d^3 - 13d^2 + 16d - 8)/12 }[/math] | Chmutov |
See also
References
- Varchenko, A. N. (1983), "Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface", Doklady Akademii Nauk SSSR 270 (6): 1294–1297
- Miyaoka, Yoichi (1984), "The maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants", Mathematische Annalen 268 (2): 159–171, doi:10.1007/bf01456083
- Chmutov, S. V. (1992), "Examples of projective surfaces with many singularities.", J. Algebraic Geom. 1 (2): 191–196
- Escudero, Juan García (2013), "On a family of complex algebraic surfaces of degree 3n", C. R. Math. Acad. Sci. Paris 351 (17–18): 699–702, doi:10.1016/j.crma.2013.09.009
Original source: https://en.wikipedia.org/wiki/Nodal surface.
Read more |