Nonrecursive ordinal
In mathematics, particularly set theory, non-recursive ordinals are large countable ordinals greater than all the recursive ordinals, and therefore can not be expressed using recursive ordinal notations.
The Church–Kleene ordinal and variants
The smallest non-recursive ordinal is the Church Kleene ordinal, [math]\displaystyle{ \omega_1^{\mathsf{CK}} }[/math], named after Alonzo Church and S. C. Kleene; its order type is the set of all recursive ordinals. Since the successor of a recursive ordinal is recursive, the Church–Kleene ordinal is a limit ordinal. It is also the smallest ordinal that is not hyperarithmetical, and the smallest admissible ordinal after [math]\displaystyle{ \omega }[/math] (an ordinal [math]\displaystyle{ \alpha }[/math] is called admissible if [math]\displaystyle{ L_\alpha \models \mathsf{KP} }[/math].) The [math]\displaystyle{ \omega_1^{\mathsf{CK}} }[/math]-recursive subsets of [math]\displaystyle{ \omega }[/math] are exactly the [math]\displaystyle{ \Delta^1_1 }[/math] subsets of [math]\displaystyle{ \omega }[/math].[1]
The notation [math]\displaystyle{ \omega_1^{\mathsf{CK}} }[/math] is in reference to [math]\displaystyle{ \omega_1 }[/math], the first uncountable ordinal, which is the set of all countable ordinals, analogously to how the Church-Kleene ordinal is the set of all recursive ordinals. Some old sources use [math]\displaystyle{ \omega_1 }[/math] to denote the Church-Kleene ordinal.[2]
For a set [math]\displaystyle{ x\subseteq\mathbb N }[/math], A set is x-computable if it is computable from a Turing machine with an oracle state that queries x. The relativized Church–Kleene ordinal [math]\displaystyle{ \omega_1^x }[/math] is the supremum of the order types of x-computable relations. The Friedman-Jensen-Sacks theorem states that for every countable admissible ordinal [math]\displaystyle{ \alpha }[/math], there exists a set x such that [math]\displaystyle{ \alpha=\omega_1^x }[/math].[3]
[math]\displaystyle{ \omega_\omega^{\mathsf{CK}} }[/math], first defined by Stephen G. Simpson[citation needed] is an extension of the Church–Kleene ordinal. This is the smallest limit of admissible ordinals, yet this ordinal is not admissible. Alternatively, this is the smallest α such that [math]\displaystyle{ L_\alpha \cap \mathsf{P}(\omega) }[/math] is a model of [math]\displaystyle{ \Pi^1 1 }[/math]-comprehension.[1]
Recursively ordinals
The [math]\displaystyle{ \alpha }[/math]th admissible ordinal is sometimes denoted by [math]\displaystyle{ \tau_\alpha }[/math].[4][5]
Recursively "x" ordinals, where "x" typically represents a large cardinal property, are kinds of nonrecursive ordinals.[6]
An ordinal [math]\displaystyle{ \alpha }[/math] is called recursively inaccessible if it is admissible and a limit of admissibles. Alternatively, [math]\displaystyle{ \alpha }[/math] is recursively inaccessible iff [math]\displaystyle{ \alpha }[/math] is the [math]\displaystyle{ \alpha }[/math]th admissible ordinal,[5] or iff [math]\displaystyle{ L_\alpha \models \mathsf{KPi} }[/math], an extension of Kripke–Platek set theory stating that each set is contained in a model of Kripke–Platek set theory. Under the condition that [math]\displaystyle{ L_\alpha\vDash\textrm{V=HC} }[/math] ("every set is hereditarily countable"), [math]\displaystyle{ \alpha }[/math] is recursively inaccessible iff [math]\displaystyle{ L_\alpha \cap \mathsf{P}(\omega) }[/math] is a model of [math]\displaystyle{ \Delta^1 2 }[/math]-comprehension.[7]
An ordinal [math]\displaystyle{ \alpha }[/math] is called recursively hyperinaccessible if it is recursively inaccessible and a limit of recursively inaccessibles, or where [math]\displaystyle{ \alpha }[/math] is the [math]\displaystyle{ \alpha }[/math]th recursively inaccessible. Like "hyper-inaccessible cardinal", different authors conflict on this terminology.
An ordinal [math]\displaystyle{ \alpha }[/math] is called recursively Mahlo if it is admissible and for any [math]\displaystyle{ \alpha }[/math]-recursive function [math]\displaystyle{ f : \alpha \rightarrow \alpha }[/math] there is an admissible [math]\displaystyle{ \beta \lt \alpha }[/math] such that [math]\displaystyle{ \left\{f(\gamma)\mid\gamma\in\beta\right\}\subseteq\beta }[/math] (that is, [math]\displaystyle{ \beta }[/math] is closed under [math]\displaystyle{ f }[/math]).[2] Mirroring the Mahloness hierarchy, [math]\displaystyle{ \alpha }[/math] is recursively [math]\displaystyle{ \gamma }[/math]-Mahlo for an ordinal [math]\displaystyle{ \gamma }[/math] if it is admissible and for any [math]\displaystyle{ \alpha }[/math]-recursive function [math]\displaystyle{ f : \alpha \rightarrow \alpha }[/math] there is an admissible ordinal [math]\displaystyle{ \beta \lt \alpha }[/math] such that [math]\displaystyle{ \beta }[/math] is closed under [math]\displaystyle{ f }[/math], and [math]\displaystyle{ \beta }[/math] is recursively [math]\displaystyle{ \delta }[/math]-Mahlo for all [math]\displaystyle{ \delta\lt \gamma }[/math].[6]
An ordinal [math]\displaystyle{ \alpha }[/math] is called recursively weakly compact if it is [math]\displaystyle{ \Pi_3 }[/math]-reflecting, or equivalently,[2] 2-admissible. These ordinals have strong recursive Mahloness properties, if α is [math]\displaystyle{ \Pi_3 }[/math]-reflecting then [math]\displaystyle{ \alpha }[/math] is recursively [math]\displaystyle{ \alpha }[/math]-Mahlo.[6]
Weakenings of stable ordinals
An ordinal [math]\displaystyle{ \alpha }[/math] is stable if [math]\displaystyle{ L_\alpha }[/math] is a [math]\displaystyle{ \Sigma_1 }[/math]-elementary-substructure of [math]\displaystyle{ L }[/math], denoted [math]\displaystyle{ L_\alpha\preceq_1 L }[/math].[8] These are some of the largest named nonrecursive ordinals appearing in a model-theoretic context, for instance greater than [math]\displaystyle{ \min\{\alpha: L_\alpha \models T\} }[/math] for any computably axiomatizable theory [math]\displaystyle{ T }[/math].[9]Proposition 0.7. There are various weakenings of stable ordinals:[1]
- A countable ordinal [math]\displaystyle{ \alpha }[/math] is called [math]\displaystyle{ (+1) }[/math]-stable iff [math]\displaystyle{ L_\alpha \preceq_1 L_{\alpha+1} }[/math].
- The smallest [math]\displaystyle{ (+1) }[/math]-stable ordinal is much larger than the smallest recursively weakly compact ordinal: it has been shown that the smallest [math]\displaystyle{ (+1) }[/math]-stable ordinal is [math]\displaystyle{ \Pi_n }[/math]-reflecting for all finite [math]\displaystyle{ n }[/math].[2]
- In general, a countable ordinal [math]\displaystyle{ \alpha }[/math] is called [math]\displaystyle{ (+\beta) }[/math]-stable iff [math]\displaystyle{ L_\alpha \preceq_1 L_{\alpha+\beta} }[/math].
- A countable ordinal [math]\displaystyle{ \alpha }[/math] is called [math]\displaystyle{ (^+) }[/math]-stable iff [math]\displaystyle{ L_\alpha \preceq_1 L_{\alpha^+} }[/math], where [math]\displaystyle{ \beta^+ }[/math] is the smallest admissible ordinal [math]\displaystyle{ \gt \beta }[/math]. The smallest [math]\displaystyle{ (^+) }[/math]-stable ordinal is again much larger than the smallest [math]\displaystyle{ (+1) }[/math]-stable or the smallest [math]\displaystyle{ (+\beta) }[/math]-stable for any constant [math]\displaystyle{ \beta }[/math].
- A countable ordinal [math]\displaystyle{ \alpha }[/math] is called [math]\displaystyle{ (^{++}) }[/math]-stable iff [math]\displaystyle{ L_\alpha \preceq_1 L_{\alpha^{++}} }[/math], where [math]\displaystyle{ \beta^{++} }[/math] are the two smallest admissible ordinals [math]\displaystyle{ \gt \beta }[/math]. The smallest [math]\displaystyle{ (^{++}) }[/math]-stable ordinal is larger than the smallest [math]\displaystyle{ \Sigma^1_1 }[/math]-reflecting.
- A countable ordinal [math]\displaystyle{ \alpha }[/math] is called inaccessibly-stable iff [math]\displaystyle{ L_\alpha \preceq_1 L_{\beta} }[/math], where [math]\displaystyle{ \beta }[/math] is the smallest recursively inaccessible ordinal [math]\displaystyle{ \gt \alpha }[/math]. The smallest inaccessibly-stable ordinal is larger than the smallest [math]\displaystyle{ (^{++}) }[/math]-stable.
- A countable ordinal [math]\displaystyle{ \alpha }[/math] is called Mahlo-stable iff [math]\displaystyle{ L_\alpha \preceq_1 L_{\beta} }[/math], where [math]\displaystyle{ \beta }[/math] is the smallest recursively Mahlo ordinal [math]\displaystyle{ \gt \alpha }[/math]. The smallest Mahlo-stable ordinal is larger than the smallest inaccessibly-stable.
- A countable ordinal [math]\displaystyle{ \alpha }[/math] is called doubly [math]\displaystyle{ (+1) }[/math]-stable iff [math]\displaystyle{ L_\alpha \preceq_1 L_{\beta} \preceq_1 L_{\beta+1} }[/math]. The smallest doubly [math]\displaystyle{ (+1) }[/math]-stable ordinal is larger than the smallest Mahlo-stable.
Larger nonrecursive ordinals
- The least ordinal [math]\displaystyle{ \alpha }[/math] such that [math]\displaystyle{ L_\alpha \preceq_1 L_\beta }[/math] where [math]\displaystyle{ \beta }[/math] is the smallest nonprojectible ordinal.
- An ordinal [math]\displaystyle{ \alpha }[/math] is nonprojectible if [math]\displaystyle{ \alpha }[/math] is a limit of [math]\displaystyle{ \alpha }[/math]-stable ordinals, or; if the set [math]\displaystyle{ X = \left\{ \beta \lt \alpha \mid L_\beta \preceq_1 L_\alpha\right\} }[/math] is unbounded in [math]\displaystyle{ \alpha }[/math].
- The ordinal of ramified analysis, often written as [math]\displaystyle{ \beta_0 }[/math]. This is the smallest [math]\displaystyle{ \beta }[/math] such that [math]\displaystyle{ L_\beta \cap \mathsf{P}(\omega) }[/math] is a model of second-order comprehension, or [math]\displaystyle{ L_\beta \models \mathsf{ZFC^{-}} }[/math], [math]\displaystyle{ \mathsf{ZFC} }[/math] without the powerset axiom.
- The least ordinal [math]\displaystyle{ \alpha }[/math] such that [math]\displaystyle{ L_\alpha \models \mathsf{KP} + '\omega_1\textrm{ exists}' }[/math]. This ordinal has been characterized by Toshiyasu Arai.[10]
- The least ordinal [math]\displaystyle{ \alpha }[/math] such that [math]\displaystyle{ L_\alpha \models \mathsf{ZFC^{-}} + '\omega_1\textrm{ exists}' }[/math].
- The least stable ordinal.
References
- ↑ 1.0 1.1 1.2 D. Madore, A Zoo of Ordinals (2017). Accessed September 2021.
- ↑ 2.0 2.1 2.2 2.3 W. Richter, P. Aczel, Inductive Definitions and Reflecting Properties of Admissible Ordinals (1973, p.15). Accessed 2021 October 28.
- ↑ Sacks, Gerald E. (1976), "Countable admissible ordinals and hyperdegrees", Advances in Mathematics 19 (2): 213–262, doi:10.1016/0001-8708(76)90187-0
- ↑ P. G. Hinman, Recursion-Theoretic Hierarchies (1978), pp.419--420. Perspectives in Mathematical Logic, ISBN 3-540-07904-1.
- ↑ 5.0 5.1 J. Barwise, Admissible Sets and Structures (1976), pp.174--176. Perspectives in Logic, Cambridge University Press, ISBN 3-540-07451-1.
- ↑ 6.0 6.1 6.2 Rathjen, Michael (1994), "Proof theory of reflection", Annals of Pure and Applied Logic 68 (2): 181–224, doi:10.1016/0168-0072(94)90074-4, https://www1.maths.leeds.ac.uk/~rathjen/Ehab.pdf
- ↑ W. Marek, Some comments on the paper by Artigue, Isambert, Perrin, and Zalc (1976), ICM. Accessed 19 May 2023.
- ↑ J. Barwise, Admissible Sets and Structures (1976), Cambridge University Press, Perspectives in Logic.
- ↑ W. Marek, K. Rasmussen, Spectrum of L in libraries (WorldCat catalog) (EuDML page), Państwowe Wydawn. Accessed 2022-12-01.
- ↑ T. Arai, A Sneak Preview of Proof Theory of Ordinals (1997, p.17). Accessed 2021 October 28.
- Church, Alonzo; Kleene, S. C. (1937), "Formal definitions in the theory of ordinal numbers.", Fundamenta Mathematicae 28: 11–21, doi:10.4064/fm-28-1-11-21
- Church, Alonzo (1938), "The constructive second number class", Bull. Amer. Math. Soc. 44 (4): 224–232, doi:10.1090/S0002-9904-1938-06720-1, https://www.ams.org/bull/1938-44-04/S0002-9904-1938-06720-1/
- Kleene, S. C. (1938), "On Notation for Ordinal Numbers", Journal of Symbolic Logic (Vol. 3, No. 4) 3 (4): 150–155, doi:10.2307/2267778
- Rogers, Hartley (1987), The Theory of Recursive Functions and Effective Computability, First MIT press paperback edition, ISBN 978-0-262-68052-3
- Simpson, Stephen G. (2009), Subsystems of Second-Order Arithmetic, Perspectives in Logic, 2, Cambridge University Press, pp. 246, 267, 292-293, ISBN 978-0-521-88439-6
- Richter, Wayne; Aczel, Peter (1974), Inductive Definitions and Reflecting Properties of Admissible Ordinals, pp. 312–313, 333, ISBN 0-7204-2276-0
Original source: https://en.wikipedia.org/wiki/Nonrecursive ordinal.
Read more |