Norm (abelian group)
From HandWiki
In mathematics, specifically abstract algebra, if [math]\displaystyle{ (G, +) }[/math] is an (abelian) group with identity element [math]\displaystyle{ e }[/math] then [math]\displaystyle{ \nu\colon G \to \mathbb{R} }[/math] is said to be a norm on [math]\displaystyle{ (G, +) }[/math] if:
- Positive definiteness: [math]\displaystyle{ \nu(g) \gt 0 \text{ for all } g \ne e \text{ and } \nu(e) = 0 }[/math],
- Subadditivity: [math]\displaystyle{ \nu(g+h) \le \nu(g) + \nu(h) }[/math],
- Inversion (Symmetry): [math]\displaystyle{ \nu(-g) = \nu(g) \text{ for all } g \in G }[/math].[1]
An alternative, stronger definition of a norm on [math]\displaystyle{ (G, +) }[/math] requires
- [math]\displaystyle{ \nu(g) \gt 0 \text{ for all } g \ne e }[/math],
- [math]\displaystyle{ \nu(g+h) \le \nu(g) + \nu(h) }[/math],
- [math]\displaystyle{ \nu(mg) = |m| \, \nu(g) \text{ for all } m \in \mathbb{Z} }[/math].[2]
The norm [math]\displaystyle{ \nu }[/math] is discrete if there is some real number [math]\displaystyle{ \rho \gt 0 }[/math] such that [math]\displaystyle{ \nu(g) \gt \rho }[/math] whenever [math]\displaystyle{ g \ne 0 }[/math].
Free abelian groups
An abelian group is a free abelian group if and only if it has a discrete norm.[2]
References
- ↑ Bingham, N.H.; Ostaszewski, A.J. (2010). "Normed versus topological groups: Dichotomy and duality". Dissertationes Mathematicae 472: 4. doi:10.4064/dm472-0-1.
- ↑ 2.0 2.1 Steprāns, Juris (1985), "A characterization of free abelian groups", Proceedings of the American Mathematical Society 93 (2): 347–349, doi:10.2307/2044776
Original source: https://en.wikipedia.org/wiki/Norm (abelian group).
Read more |