Nu function

From HandWiki

In mathematics, the nu function is a generalization of the reciprocal gamma function of the Laplace transform.

Formally, it can be defined as

[math]\displaystyle{ \begin{align} \nu(x) & \equiv \int_0^\infty \frac{x^t \, dt}{\Gamma(t+1)} \\[10pt] \nu(x,\alpha) & \equiv \int_0^\infty \frac{x^{\alpha+t} \, dt}{\Gamma(\alpha+t+1)} \end{align} }[/math]

where [math]\displaystyle{ \Gamma(z) }[/math] is the Gamma function.[1][2]

See also

  • Lambda function (disambiguation)
  • Mu function

References

  1. Erdélyi, A; Magnus, W; Tricomi, FG; Oberhettinger, F (1981). Higher Transcendental Functions, Vol. 3: The Function y(x) and Related Functions. pp. 217–224. 
  2. (in English) Table of Integrals, Series, and Products (8th ed.). Academic Press, Inc.. 2015. ISBN 978-0-12-384933-5. 

External links