O*-algebra
From HandWiki
In mathematics, an O*-algebra is an algebra of possibly unbounded operators defined on a dense subspace of a Hilbert space. The original examples were described by (Borchers 1962) and (Uhlmann 1962), who studied some examples of O*-algebras, called Borchers algebras, arising from the Wightman axioms of quantum field theory. (Powers 1971) and (Lassner 1972) began the systematic study of algebras of unbounded operators.
References
- Borchers, H.-J. (1962), "On structure of the algebra of field operators", Nuovo Cimento 24: 214–236, doi:10.1007/BF02745645
- Borchers, H. J.; Yngvason, J. (1975), "On the algebra of field operators. The weak commutant and integral decompositions of states", Communications in Mathematical Physics 42: 231–252, doi:10.1007/bf01608975, ISSN 0010-3616, http://projecteuclid.org/euclid.cmp/1103899047
- Lassner, G. (1972), "Topological algebras of operators", Reports on Mathematical Physics 3 (4): 279–293, doi:10.1016/0034-4877(72)90012-2, ISSN 0034-4877
- Powers, Robert T. (1971), "Self-adjoint algebras of unbounded operators", Communications in Mathematical Physics 21: 85–124, doi:10.1007/bf01646746, ISSN 0010-3616, http://projecteuclid.org/euclid.cmp/1103857289
- Schmüdgen, Konrad (1990), Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, 37, Birkhäuser Verlag, doi:10.1007/978-3-0348-7469-4, ISBN 978-3-7643-2321-9
- Uhlmann, Armin (1962), "Über die Definition der Quantenfelder nach Wightman und Haag", Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Nat. Reihe 11: 213–217
Original source: https://en.wikipedia.org/wiki/O*-algebra.
Read more |