P-384
From HandWiki
P-384 is the elliptic curve currently specified in Commercial National Security Algorithm Suite for the ECDSA and ECDH algorithms. It is a 384-bit curve over a finite field of prime order approximately 394×10113.[lower-alpha 1] Its binary representation has 384 bits, with a simple pattern.[lower-alpha 2] The curve is given by the equation y2 = x3 − 3x + b, where b is given by a certain 384-bit number. The curve has order less than the field size.[lower-alpha 3] The bit-length of a key is considered to be that of the order of the curve, which is also 384 bits.
Notes
- ↑ p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319
- ↑ Explicitly: p = 1111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111110 1111111111111111111111111111111100000000000000000000000000000000 00000000000000000000000000000000111111111111111111111111111111112, that is, from the most significant bit: 255 '1's, 1 '0', 32 '1's, 64 '0's, 32 '1's.
- ↑ n = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643
External links
- FIPS 186-4 standards where the curve is defined [1]
- Commercial National Security Algorithm (CNSA) Suite Factsheet [2]
Original source: https://en.wikipedia.org/wiki/P-384.
Read more |