p-Laplacian

From HandWiki

In mathematics, the p-Laplacian, or the p-Laplace operator, is a quasilinear elliptic partial differential operator of 2nd order. It is a nonlinear generalization of the Laplace operator, where [math]\displaystyle{ p }[/math] is allowed to range over [math]\displaystyle{ 1 \lt p \lt \infty }[/math]. It is written as

[math]\displaystyle{ \Delta_p u:=\nabla \cdot (|\nabla u|^{p-2} \nabla u). }[/math]

Where the [math]\displaystyle{ |\nabla u|^{p-2} }[/math] is defined as

[math]\displaystyle{ \quad |\nabla u|^{p-2} = \left[ \textstyle \left(\frac{\partial u}{\partial x_1}\right)^2 + \cdots + \left(\frac{\partial u}{\partial x_n}\right)^2 \right]^\frac{p-2}{2} }[/math]

In the special case when [math]\displaystyle{ p=2 }[/math], this operator reduces to the usual Laplacian.[1] In general solutions of equations involving the p-Laplacian do not have second order derivatives in classical sense, thus solutions to these equations have to be understood as weak solutions. For example, we say that a function u belonging to the Sobolev space [math]\displaystyle{ W^{1,p}(\Omega) }[/math] is a weak solution of

[math]\displaystyle{ \Delta_p u=0 \mbox{ in } \Omega }[/math]

if for every test function [math]\displaystyle{ \varphi\in C^\infty_0(\Omega) }[/math] we have

[math]\displaystyle{ \int_\Omega |\nabla u|^{p-2} \nabla u\cdot \nabla\varphi\,dx=0 }[/math]

where [math]\displaystyle{ \cdot }[/math] denotes the standard scalar product.

Energy formulation

The weak solution of the p-Laplace equation with Dirichlet boundary conditions

[math]\displaystyle{ \begin{cases} -\Delta_p u = f& \mbox{ in }\Omega\\ u=g & \mbox{ on }\partial\Omega \end{cases} }[/math]

in a domain [math]\displaystyle{ \Omega\subset\mathbb{R}^N }[/math] is the minimizer of the energy functional

[math]\displaystyle{ J(u) = \frac{1}{p}\,\int_\Omega |\nabla u|^p \,dx-\int_\Omega f\,u\,dx }[/math]

among all functions in the Sobolev space [math]\displaystyle{ W^{1,p}(\Omega) }[/math] satisfying the boundary conditions in the trace sense.[1] In the particular case [math]\displaystyle{ f=1, g=0 }[/math] and [math]\displaystyle{ \Omega }[/math] is a ball of radius 1, the weak solution of the problem above can be explicitly computed and is given by

[math]\displaystyle{ u(x)=C\, \left(1-|x|^\frac{p}{p-1}\right) }[/math]

where [math]\displaystyle{ C }[/math] is a suitable constant depending on the dimension [math]\displaystyle{ N }[/math] and on [math]\displaystyle{ p }[/math] only. Observe that for [math]\displaystyle{ p\gt 2 }[/math] the solution is not twice differentiable in classical sense.

Notes

  1. 1.0 1.1 Evans, pp 356.

Sources

Further reading