Padua points
In polynomial interpolation of two variables, the Padua points are the first known example (and up to now the only one) of a unisolvent point set (that is, the interpolating polynomial is unique) with minimal growth of their Lebesgue constant, proven to be [math]\displaystyle{ O(\log^2 n) }[/math].[1] Their name is due to the University of Padua, where they were originally discovered.[2]
The points are defined in the domain [math]\displaystyle{ [-1,1] \times [-1,1] \subset \mathbb{R}^2 }[/math]. It is possible to use the points with four orientations, obtained with subsequent 90-degree rotations: this way we get four different families of Padua points.
The four families
We can see the Padua point as a "sampling" of a parametric curve, called generating curve, which is slightly different for each of the four families, so that the points for interpolation degree [math]\displaystyle{ n }[/math] and family [math]\displaystyle{ s }[/math] can be defined as
- [math]\displaystyle{ \text{Pad}_n^s=\lbrace\mathbf{\xi}=(\xi_1,\xi_2)\rbrace=\left\lbrace\gamma_s\left(\frac{k\pi}{n(n+1)}\right),k=0,\ldots,n(n+1)\right\rbrace. }[/math]
Actually, the Padua points lie exactly on the self-intersections of the curve, and on the intersections of the curve with the boundaries of the square [math]\displaystyle{ [-1,1]^2 }[/math]. The cardinality of the set [math]\displaystyle{ \operatorname{Pad}_n^s }[/math] is [math]\displaystyle{ |\operatorname{Pad}_n^s| = \frac{(n+1)(n+2)}{2} }[/math]. Moreover, for each family of Padua points, two points lie on consecutive vertices of the square [math]\displaystyle{ [-1,1]^2 }[/math], [math]\displaystyle{ 2n-1 }[/math] points lie on the edges of the square, and the remaining points lie on the self-intersections of the generating curve inside the square.[3][4]
The four generating curves are closed parametric curves in the interval [math]\displaystyle{ [0,2\pi] }[/math], and are a special case of Lissajous curves.
The first family
The generating curve of Padua points of the first family is
- [math]\displaystyle{ \gamma_1(t)=[-\cos((n+1)t),-\cos(nt)],\quad t\in [0,\pi]. }[/math]
If we sample it as written above, we have:
- [math]\displaystyle{ \operatorname{Pad}_n^1=\lbrace\mathbf{\xi}=(\mu_j,\eta_k), 0\le j\le n; 1\le k\le\lfloor\frac{n}{2}\rfloor+1+\delta_j\rbrace, }[/math]
where [math]\displaystyle{ \delta_j=0 }[/math] when [math]\displaystyle{ n }[/math] is even or odd but [math]\displaystyle{ j }[/math] is even, [math]\displaystyle{ \delta_j=1 }[/math] if [math]\displaystyle{ n }[/math] and [math]\displaystyle{ k }[/math] are both odd
with
- [math]\displaystyle{ \mu_j=\cos\left(\frac{j\pi}{n}\right), \eta_k= \begin{cases} \cos\left(\frac{(2k-2)\pi}{n+1}\right) & j\mbox{ odd} \\ \cos\left(\frac{(2k-1)\pi}{n+1}\right) & j\mbox{ even.} \end{cases} }[/math]
From this follows that the Padua points of first family will have two vertices on the bottom if [math]\displaystyle{ n }[/math] is even, or on the left if [math]\displaystyle{ n }[/math] is odd.
The second family
The generating curve of Padua points of the second family is
- [math]\displaystyle{ \gamma_2(t)=[-\cos(nt),-\cos((n+1)t)],\quad t\in [0,\pi], }[/math]
which leads to have vertices on the left if [math]\displaystyle{ n }[/math] is even and on the bottom if [math]\displaystyle{ n }[/math] is odd.
The third family
The generating curve of Padua points of the third family is
- [math]\displaystyle{ \gamma_3(t)=[\cos((n+1)t),\cos(nt)],\quad t\in [0,\pi], }[/math]
which leads to have vertices on the top if [math]\displaystyle{ n }[/math] is even and on the right if [math]\displaystyle{ n }[/math] is odd.
The fourth family
The generating curve of Padua points of the fourth family is
- [math]\displaystyle{ \gamma_4(t)=[\cos(nt),\cos((n+1)t)],\quad t\in [0,\pi], }[/math]
which leads to have vertices on the right if [math]\displaystyle{ n }[/math] is even and on the top if [math]\displaystyle{ n }[/math] is odd.
The interpolation formula
The explicit representation of their fundamental Lagrange polynomial is based on the reproducing kernel [math]\displaystyle{ K_n(\mathbf{x},\mathbf{y}) }[/math], [math]\displaystyle{ \mathbf{x}=(x_1,x_2) }[/math] and [math]\displaystyle{ \mathbf{y}=(y_1,y_2) }[/math], of the space [math]\displaystyle{ \Pi_n^2([-1,1]^2) }[/math] equipped with the inner product
- [math]\displaystyle{ \langle f,g\rangle =\frac{1}{\pi^2} \int_{[-1,1]^2} f(x_1,x_2)g(x_1,x_2)\frac{dx_1}{\sqrt{1-x_1^2}}\frac{dx_2}{\sqrt{1-x_2^2}} }[/math]
defined by
- [math]\displaystyle{ K_n(\mathbf{x},\mathbf{y})=\sum_{k=0}^n\sum_{j=0}^k \hat T_j(x_1)\hat T_{k-j}(x_2)\hat T_j(y_1)\hat T_{k-j}(y_2) }[/math]
with [math]\displaystyle{ \hat T_j }[/math] representing the normalized Chebyshev polynomial of degree [math]\displaystyle{ j }[/math] (that is, [math]\displaystyle{ \hat T_0=T_0 }[/math] and [math]\displaystyle{ \hat T_p=\sqrt{2}T_p }[/math], where [math]\displaystyle{ T_p(\cdot)=\cos(p\arccos(\cdot)) }[/math] is the classical Chebyshev polynomial of first kind of degree [math]\displaystyle{ p }[/math]).[3] For the four families of Padua points, which we may denote by [math]\displaystyle{ \operatorname{Pad}_n^s=\lbrace\mathbf{\xi}=(\xi_1,\xi_2)\rbrace }[/math], [math]\displaystyle{ s=\lbrace 1,2,3,4\rbrace }[/math], the interpolation formula of order [math]\displaystyle{ n }[/math] of the function [math]\displaystyle{ f\colon [-1,1]^2\to\mathbb{R}^2 }[/math] on the generic target point [math]\displaystyle{ \mathbf{x}\in [-1,1]^2 }[/math] is then
- [math]\displaystyle{ \mathcal{L}_n^s f(\mathbf{x})=\sum_{\mathbf{\xi}\in\operatorname{Pad}_n^s}f(\mathbf{\xi})L^s_{\mathbf\xi}(\mathbf{x}) }[/math]
where [math]\displaystyle{ L^s_{\mathbf\xi}(\mathbf{x}) }[/math] is the fundamental Lagrange polynomial
- [math]\displaystyle{ L^s_{\mathbf\xi}(\mathbf{x})=w_{\mathbf\xi}(K_n(\mathbf\xi,\mathbf{x})-T_n(\xi_i)T_n(x_i)),\quad s=1,2,3,4,\quad i=2-(s\mod 2). }[/math]
The weights [math]\displaystyle{ w_{\mathbf\xi} }[/math] are defined as
- [math]\displaystyle{ w_{\mathbf\xi}=\frac{1}{n(n+1)}\cdot \begin{cases} \frac{1}{2}\text{ if }\mathbf\xi\text{ is a vertex point}\\ 1\text{ if }\mathbf\xi\text{ is an edge point}\\ 2\text{ if }\mathbf\xi\text{ is an interior point.} \end{cases} }[/math]
References
- ↑ Caliari, Marco; Bos, Len; de Marchi, Stefano; Vianello, Marco; Xu, Yuan (2006), "Bivariate Lagrange interpolation at the Padua points: the generating curve approach", J. Approx. Theory 143 (1): 15–25, doi:10.1016/j.jat.2006.03.008
- ↑ de Marchi, Stefano; Caliari, Marco; Vianello, Marco (2005), "Bivariate polynomial interpolation at new nodal sets", Appl. Math. Comput. 165 (2): 261–274, doi:10.1016/j.amc.2004.07.001
- ↑ 3.0 3.1 Caliari, Marco; de Marchi, Stefano; Vianello, Marco (2008), "Algorithm 886: Padua2D—Lagrange Interpolation at Padua Points on Bivariate Domains", ACM Transactions on Mathematical Software 35 (3): 1–11, doi:10.1145/1391989.1391994
- ↑ Bos, Len; de Marchi, Stefano; Vianello, Marco; Xu, Yuan (2007), "Bivariate Lagrange interpolation at the Padua points: the ideal theory approach", Numerische Mathematik 108 (1): 43–57, doi:10.1007/s00211-007-0112-z
External links
Original source: https://en.wikipedia.org/wiki/Padua points.
Read more |