Physics:Auxiliary field
In physics, and especially quantum field theory, an auxiliary field is one whose equations of motion admit a single solution. Therefore, the Lagrangian describing such a field [math]\displaystyle{ A }[/math] contains an algebraic quadratic term and an arbitrary linear term, while it contains no kinetic terms (derivatives of the field):
- [math]\displaystyle{ \mathcal{L}_\text{aux} = \frac{1}{2}(A, A) + (f(\varphi), A). }[/math]
The equation of motion for [math]\displaystyle{ A }[/math] is
- [math]\displaystyle{ A(\varphi) = -f(\varphi), }[/math]
and the Lagrangian becomes
- [math]\displaystyle{ \mathcal{L}_\text{aux} = -\frac{1}{2}(f(\varphi), f(\varphi)). }[/math]
Auxiliary fields generally do not propagate,[1] and hence the content of any theory can remain unchanged in many circumstances by adding such fields by hand. If we have an initial Lagrangian [math]\displaystyle{ \mathcal{L}_0 }[/math] describing a field [math]\displaystyle{ \varphi }[/math], then the Lagrangian describing both fields is
- [math]\displaystyle{ \mathcal{L} = \mathcal{L}_0(\varphi) + \mathcal{L}_\text{aux} = \mathcal{L}_0(\varphi) - \frac{1}{2}\big(f(\varphi), f(\varphi)\big). }[/math]
Therefore, auxiliary fields can be employed to cancel quadratic terms in [math]\displaystyle{ \varphi }[/math] in [math]\displaystyle{ \mathcal{L}_0 }[/math] and linearize the action [math]\displaystyle{ \mathcal{S} = \int \mathcal{L} \,d^n x }[/math].
Examples of auxiliary fields are the complex scalar field F in a chiral superfield,[2] the real scalar field D in a vector superfield, the scalar field B in BRST and the field in the Hubbard–Stratonovich transformation.
The quantum mechanical effect of adding an auxiliary field is the same as the classical, since the path integral over such a field is Gaussian. To wit:
- [math]\displaystyle{ \int_{-\infty}^\infty dA\, e^{-\frac{1}{2} A^2 + A f} = \sqrt{2\pi}e^{\frac{f^2}{2}}. }[/math]
See also
References
- ↑ Fujimori, Toshiaki; Nitta, Muneto; Yamada, Yusuke (2016-09-19). "Ghostbusters in higher derivative supersymmetric theories: who is afraid of propagating auxiliary fields?". Journal of High Energy Physics 2016 (9): 106. doi:10.1007/JHEP09(2016)106. Bibcode: 2016JHEP...09..106F. https://doi.org/10.1007/JHEP09(2016)106.
- ↑ Antoniadis, I.; Dudas, E.; Ghilencea, D.M. (Mar 2008). "Supersymmetric models with higher dimensional operators". Journal of High Energy Physics 2008 (3): 45. doi:10.1088/1126-6708/2008/03/045. Bibcode: 2008JHEP...03..045A. https://dx.doi.org/10.1088/1126-6708/2008/03/045.
Original source: https://en.wikipedia.org/wiki/Auxiliary field.
Read more |