Physics:Berezin integral

From HandWiki
Short description: Integration for Grassmann variables

In mathematical physics, the Berezin integral, named after Felix Berezin, (also known as Grassmann integral, after Hermann Grassmann), is a way to define integration for functions of Grassmann variables (elements of the exterior algebra). It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions.

Definition

Let [math]\displaystyle{ \Lambda^n }[/math] be the exterior algebra of polynomials in anticommuting elements [math]\displaystyle{ \theta_{1},\dots,\theta_{n} }[/math] over the field of complex numbers. (The ordering of the generators [math]\displaystyle{ \theta_1,\dots,\theta_n }[/math] is fixed and defines the orientation of the exterior algebra.)

One variable

The Berezin integral over the sole Grassmann variable [math]\displaystyle{ \theta = \theta_1 }[/math] is defined to be a linear functional

[math]\displaystyle{ \int [af(\theta)+bg(\theta)] \, d\theta = a\int f(\theta) \, d\theta + b\int g(\theta) \, d\theta, \quad a,b \in \C }[/math]

where we define

[math]\displaystyle{ \int \theta \, d\theta = 1, \qquad \int \, d\theta = 0 }[/math]

so that :

[math]\displaystyle{ \int \frac\partial{\partial\theta}f(\theta)\,d\theta = 0. }[/math]

These properties define the integral uniquely and imply

[math]\displaystyle{ \int (a\theta+b)\, d\theta = a, \quad a,b \in \C. }[/math]

Take note that [math]\displaystyle{ f(\theta)=a\theta + b }[/math] is the most general function of [math]\displaystyle{ \theta }[/math] because Grassmann variables square to zero, so [math]\displaystyle{ f(\theta) }[/math] cannot have non-zero terms beyond linear order.

Multiple variables

The Berezin integral on [math]\displaystyle{ \Lambda^{n} }[/math] is defined to be the unique linear functional [math]\displaystyle{ \int_{\Lambda^{n} }\cdot\textrm{d}\theta }[/math] with the following properties:

[math]\displaystyle{ \int_{\Lambda^n}\theta_{n}\cdots\theta_{1}\,\mathrm{d}\theta=1, }[/math]
[math]\displaystyle{ \int_{\Lambda^n}\frac{\partial f}{\partial\theta_{i}}\,\mathrm{d}\theta=0,\ i=1,\dots,n }[/math]

for any [math]\displaystyle{ f\in\Lambda^n, }[/math] where [math]\displaystyle{ \partial/\partial\theta_{i} }[/math] means the left or the right partial derivative. These properties define the integral uniquely.

Notice that different conventions exist in the literature: Some authors define instead[1]

[math]\displaystyle{ \int_{\Lambda^n}\theta_{1}\cdots\theta_{n}\,\mathrm{d}\theta:=1. }[/math]

The formula

[math]\displaystyle{ \int_{\Lambda^n}f(\theta) \, \mathrm{d}\theta=\int_{\Lambda^1}\left( \cdots \int_{\Lambda^1}\left(\int_{\Lambda^1}f(\theta) \, \mathrm{d}\theta_{1}\right) \, \mathrm{d}\theta_2 \cdots \right)\mathrm{d}\theta_n }[/math]

expresses the Fubini law. On the right-hand side, the interior integral of a monomial [math]\displaystyle{ f=g(\theta')\theta_{1} }[/math] is set to be [math]\displaystyle{ g( \theta'), }[/math] where [math]\displaystyle{ \theta'=\left(\theta_{2},\ldots,\theta_{n}\right) }[/math]; the integral of [math]\displaystyle{ f=g (\theta') }[/math] vanishes. The integral with respect to [math]\displaystyle{ \theta_{2} }[/math] is calculated in the similar way and so on.

Change of Grassmann variables

Let [math]\displaystyle{ \theta_{i}=\theta_{i}\left(\xi_{1},\ldots,\xi_{n}\right),\ i=1,\ldots,n, }[/math] be odd polynomials in some antisymmetric variables [math]\displaystyle{ \xi_{1},\ldots,\xi_{n} }[/math]. The Jacobian is the matrix

[math]\displaystyle{ D=\left\{ \frac{\partial\theta_{i}}{\partial\xi_{j}},\ i,j=1, \ldots, n\right\}, }[/math]

where [math]\displaystyle{ \partial /\partial\xi_{j} }[/math] refers to the right derivative ([math]\displaystyle{ \partial(\theta_1\theta_2) /\partial\theta_2 = \theta_1, \; \partial(\theta_1\theta_2) /\partial\theta_1 = -\theta_2 }[/math]). The formula for the coordinate change reads

[math]\displaystyle{ \int f(\theta) \, \mathrm{d}\theta=\int f(\theta( \xi))(\det D)^{-1} \, \mathrm{d}\xi. }[/math]

Integrating even and odd variables

Definition

Consider now the algebra [math]\displaystyle{ \Lambda^{m\mid n} }[/math] of functions of real commuting variables [math]\displaystyle{ x=x_{1},\ldots,x_{m} }[/math] and of anticommuting variables [math]\displaystyle{ \theta_{1},\ldots,\theta_{n} }[/math] (which is called the free superalgebra of dimension [math]\displaystyle{ (m|n) }[/math]). Intuitively, a function [math]\displaystyle{ f=f(x,\theta) \in\Lambda^{m\mid n} }[/math] is a function of m even (bosonic, commuting) variables and of n odd (fermionic, anti-commuting) variables. More formally, an element [math]\displaystyle{ f=f(x,\theta) \in\Lambda^{m\mid n} }[/math] is a function of the argument [math]\displaystyle{ x }[/math] that varies in an open set [math]\displaystyle{ X\subset\R^{m} }[/math] with values in the algebra [math]\displaystyle{ \Lambda^{n}. }[/math] Suppose that this function is continuous and vanishes in the complement of a compact set [math]\displaystyle{ K\subset\R^{m}. }[/math] The Berezin integral is the number

[math]\displaystyle{ \int_{\Lambda^{m\mid n}} f(x,\theta) \, \mathrm{d}\theta \, \mathrm{d}x=\int_{\R^m} \, \mathrm{d}x \int_{\Lambda^n} f(x,\theta) \, \mathrm{d}\theta. }[/math]

Change of even and odd variables

Let a coordinate transformation be given by [math]\displaystyle{ x_i=x_i (y,\xi),\ i=1,\ldots,m;\ \theta_j=\theta_j (y,\xi),j=1,\ldots, n, }[/math] where [math]\displaystyle{ x_i }[/math] are even and [math]\displaystyle{ \theta_j }[/math] are odd polynomials of [math]\displaystyle{ \xi }[/math] depending on even variables [math]\displaystyle{ y. }[/math] The Jacobian matrix of this transformation has the block form:

[math]\displaystyle{ \mathrm{J}=\frac{\partial(x,\theta)}{\partial (y,\xi)}= \begin{pmatrix} A & B\\ C & D\end{pmatrix}, }[/math]

where each even derivative [math]\displaystyle{ \partial/\partial y_{j} }[/math] commutes with all elements of the algebra [math]\displaystyle{ \Lambda^{m\mid n} }[/math]; the odd derivatives commute with even elements and anticommute with odd elements. The entries of the diagonal blocks [math]\displaystyle{ A=\partial x/\partial y }[/math] and [math]\displaystyle{ D=\partial\theta/\partial\xi }[/math] are even and the entries of the off-diagonal blocks [math]\displaystyle{ B=\partial x/\partial \xi,\ C=\partial\theta/\partial y }[/math] are odd functions, where [math]\displaystyle{ \partial /\partial\xi_{j} }[/math] again mean right derivatives.

We now need the Berezinian (or superdeterminant) of the matrix [math]\displaystyle{ \mathrm{J} }[/math], which is the even function

[math]\displaystyle{ \operatorname{Ber} \mathrm{J} =\det\left( A-BD^{-1}C\right) \det D^{-1} }[/math]

defined when the function [math]\displaystyle{ \det D }[/math] is invertible in [math]\displaystyle{ \Lambda^{m\mid n}. }[/math] Suppose that the real functions [math]\displaystyle{ x_i=x_i(y,0) }[/math] define a smooth invertible map [math]\displaystyle{ F:Y\to X }[/math] of open sets [math]\displaystyle{ X, Y }[/math] in [math]\displaystyle{ \R^m }[/math] and the linear part of the map [math]\displaystyle{ \xi\mapsto\theta=\theta(y,\xi) }[/math] is invertible for each [math]\displaystyle{ y\in Y. }[/math] The general transformation law for the Berezin integral reads

[math]\displaystyle{ \begin{align} & \int_{\Lambda^{m\mid n}}f(x,\theta) \, \mathrm{d}\theta \, \mathrm{d}x = \int_{\Lambda^{m\mid n}} f(x(y,\xi),\theta (y,\xi)) \varepsilon \operatorname{Ber} \mathrm{J} \, \mathrm{d} \xi \, \mathrm{d}y \\[6pt] = {} &\int_{\Lambda^{m\mid n}} f (x(y,\xi),\theta (y,\xi)) \varepsilon \frac{\det\left(A-BD^{-1}C\right)}{\det D} \, \mathrm{d}\xi \, \mathrm{d}y, \end{align} }[/math]

where [math]\displaystyle{ \varepsilon=\mathrm{sgn}(\det\partial x(y,0)/\partial y }[/math]) is the sign of the orientation of the map [math]\displaystyle{ F. }[/math] The superposition [math]\displaystyle{ f(x(y,\xi),\theta(y,\xi)) }[/math] is defined in the obvious way, if the functions [math]\displaystyle{ x_{i}(y,\xi) }[/math] do not depend on [math]\displaystyle{ \xi. }[/math] In the general case, we write [math]\displaystyle{ x_{i}(y,\xi) =x_{i}(y,0)+\delta_{i}, }[/math] where [math]\displaystyle{ \delta_{i}, i=1,\ldots,m }[/math] are even nilpotent elements of [math]\displaystyle{ \Lambda^{m\mid n} }[/math] and set

[math]\displaystyle{ f(x(y,\xi),\theta) =f(x(y,0),\theta) +\sum_i\frac{\partial f}{\partial x_{i}}(x(y,0),\theta) \delta_{i}+\frac{1}{2} \sum_{i,j} \frac{\partial^{2}f}{\partial x_i \, \partial x_j}(x(y,0),\theta) \delta_i\delta_j+ \cdots, }[/math]

where the Taylor series is finite.

Useful formulas

The following formulas for Gaussian integrals are used often in the path integral formulation of quantum field theory:

  • [math]\displaystyle{ \int \exp\left[-\theta^TA\eta\right] \,d\theta\,d\eta = \det A }[/math]

with [math]\displaystyle{ A }[/math] being a complex [math]\displaystyle{ n \times n }[/math] matrix.

  • [math]\displaystyle{ \int \exp\left[- \tfrac{1}{2} \theta^T M \theta\right] \,d\theta = \begin{cases} \mathrm{Pf}\, M & n \mbox{ even} \\ 0 & n \mbox{ odd} \end{cases} }[/math]

with [math]\displaystyle{ M }[/math] being a complex skew-symmetric [math]\displaystyle{ n \times n }[/math] matrix, and [math]\displaystyle{ \mathrm{Pf}\, M }[/math] being the Pfaffian of [math]\displaystyle{ M }[/math], which fulfills [math]\displaystyle{ (\mathrm{Pf}\, M)^2 = \det M }[/math].

In the above formulas the notation [math]\displaystyle{ d \theta = d\theta_1\cdots \, d\theta_n }[/math] is used. From these formulas, other useful formulas follow (See Appendix A in[2]) :

  • [math]\displaystyle{ \int \exp\left[\theta^TA\eta +\theta^T J + K^T \eta \right] \,d\eta_1\,d\theta_1\dots d\eta_n d\theta_n = \det A \,\,\exp[-K^T A^{-1} J ] }[/math]

with [math]\displaystyle{ A }[/math] being an invertible [math]\displaystyle{ n \times n }[/math] matrix. Note that these integrals are all in the form of a partition function.

History

The mathematical theory of the integral with commuting and anticommuting variables was invented and developed by Felix Berezin.[3] Some important earlier insights were made by David John Candlin[4] in 1956. Other authors contributed to these developments, including the physicists Khalatnikov[5] (although his paper contains mistakes), Matthews and Salam,[6] and Martin.[7]

See also

References

  1. Mirror symmetry. Hori, Kentaro.. Providence, RI: American Mathematical Society. 2003. pp. 155. ISBN 0-8218-2955-6. OCLC 52374327. 
  2. S. Caracciolo, A. D. Sokal and A. Sportiello, Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians, Advances in Applied Mathematics, Volume 50, Issue 4, 2013, https://doi.org/10.1016/j.aam.2012.12.001; https://arxiv.org/abs/1105.6270
  3. A. Berezin, The Method of Second Quantization, Academic Press, (1966)
  4. D.J. Candlin (1956). "On Sums over Trajectories for Systems With Fermi Statistics". Nuovo Cimento 4 (2): 231–239. doi:10.1007/BF02745446. Bibcode1956NCim....4..231C. 
  5. Khalatnikov, I.M. (1955). "Predstavlenie funkzij Grina v kvantovoj elektrodinamike v forme kontinualjnyh integralov" (in RU). Journal of Experimental and Theoretical Physics 28 (3): 633. http://jetp.ac.ru/cgi-bin/dn/e_001_03_0568.pdf. Retrieved 2019-06-23. 
  6. Matthews, P. T.; Salam, A. (1955). "Propagators of quantized field". Il Nuovo Cimento (Springer Science and Business Media LLC) 2 (1): 120–134. doi:10.1007/bf02856011. ISSN 0029-6341. Bibcode1955NCimS...2..120M. 
  7. Martin, J. L. (23 June 1959). "The Feynman principle for a Fermi system". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences (The Royal Society) 251 (1267): 543–549. doi:10.1098/rspa.1959.0127. ISSN 2053-9169. Bibcode1959RSPSA.251..543M. 

Further reading

  • Theodore Voronov: Geometric integration theory on Supermanifolds, Harwood Academic Publisher, ISBN 3-7186-5199-8
  • Berezin, Felix Alexandrovich: Introduction to Superanalysis, Springer Netherlands, ISBN 978-90-277-1668-2