Physics:Blasius theorem
From HandWiki
In fluid dynamics, Blasius theorem states that [1][2][3] the force experienced by a two-dimensional fixed body in a steady irrotational flow is given by
- [math]\displaystyle{ F_x-iF_y = \frac{i\rho}{2} \oint_C \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2\mathrm{d}z }[/math]
and the moment about the origin experienced by the body is given by
- [math]\displaystyle{ M=\Re\left\{-\frac{\rho}{2}\oint_C z \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2\mathrm{d}z\right\}. }[/math]
Here,
- [math]\displaystyle{ (F_x,F_y) }[/math] is the force acting on the body,
- [math]\displaystyle{ \rho }[/math] is the density of the fluid,
- [math]\displaystyle{ C }[/math] is the contour flush around the body,
- [math]\displaystyle{ w=\phi+ i\psi }[/math] is the complex potential ([math]\displaystyle{ \phi }[/math] is the velocity potential, [math]\displaystyle{ \psi }[/math] is the stream function),
- [math]\displaystyle{ {\mathrm{d}w}/{\mathrm{d}z} = u_x-i u_y }[/math] is the complex velocity ([math]\displaystyle{ (u_x,u_y) }[/math] is the velocity vector),
- [math]\displaystyle{ z=x+iy }[/math] is the complex variable ([math]\displaystyle{ (x,y) }[/math] is the position vector),
- [math]\displaystyle{ \Re }[/math] is the real part of the complex number, and
- [math]\displaystyle{ M }[/math] is the moment about the coordinate origin acting on the body.
The first formula is sometimes called Blasius–Chaplygin formula.[4]
The theorem is named after Paul Richard Heinrich Blasius, who derived it in 1911.[5] The Kutta–Joukowski theorem directly follows from this theorem.
References
- ↑ Lamb, H. (1993). Hydrodynamics. Cambridge university press. pp. 91
- ↑ Milne-Thomson, L. M. (1949). Theoretical hydrodynamics (Vol. 8, No. 00). London: Macmillan.
- ↑ Acheson, D. J. (1991). Elementary fluid dynamics.
- ↑ Eremenko, Alexandre (2013). "Why airplanes fly, and ships sail". Purdue University. https://www.math.purdue.edu/~eremenko/dvi/airplanes.pdf.
- ↑ Blasius, H. (1911). Mitteilung zur Abhandlung über: Funktionstheoretische Methoden in der Hydrodynamik. Zeitschrift für Mathematik und Physik, 59, 43-44.
Original source: https://en.wikipedia.org/wiki/Blasius theorem.
Read more |