Physics:Bloch–Siegert shift
This article provides insufficient context for those unfamiliar with the subject.October 2020) (Learn how and when to remove this template message) ( |
The Bloch–Siegert shift is a phenomenon in quantum physics that becomes important for driven two-level systems when the driving gets strong (e.g. atoms driven by a strong laser drive or nuclear spins in NMR, driven by a strong oscillating magnetic field).
When the rotating-wave approximation (RWA) is invoked, the resonance between the driving field and a pseudospin occurs when the field frequency [math]\displaystyle{ \omega }[/math] is identical to the spin's transition frequency [math]\displaystyle{ \omega_0 }[/math]. The RWA is, however, an approximation. In 1940 Felix Bloch and Arnold Siegert showed that the dropped parts oscillating rapidly can give rise to a shift in the true resonance frequency of the dipoles.
Rotating wave approximation
In RWA, when the perturbation to the two level system is [math]\displaystyle{ H_{ab} = \frac{V_{ab}}{2} \cos{(\omega t)} }[/math], a linearly polarized field is considered as a superposition of two circularly polarized fields of the same amplitude rotating in opposite directions with frequencies [math]\displaystyle{ \omega, -\omega }[/math]. Then, in the rotating frame([math]\displaystyle{ \omega }[/math]), we can neglect the counter-rotating field and the Rabi frequency is
- [math]\displaystyle{ \Omega = \sqrt{(\Omega_0)^2 +(\omega -\omega_0)^2} }[/math]
where [math]\displaystyle{ \Omega_0 = |V_{ab}/2\hbar | }[/math] is the on-resonance Rabi frequency.
Bloch–Siegert shift
Consider the effect due to the counter-rotating field. In the counter-rotating frame ([math]\displaystyle{ \omega_\mathrm{cr} = -\omega }[/math]), the effective detuning is [math]\displaystyle{ \Delta\omega_\mathrm{cr} = \omega + \omega_0 }[/math] and the counter-rotating field adds a driving component perpendicular to the detuning, with equal amplitude [math]\displaystyle{ \Omega_0 }[/math]. The counter-rotating field effectively dresses the system, where we can define a new quantization axis slightly tilted from the original one, with an effective detuning
- [math]\displaystyle{ \Delta\omega_\mathrm{eff} = \pm\sqrt{\Omega_0^2 +(\omega +\omega_0)^2} }[/math]
Therefore, the resonance frequency ([math]\displaystyle{ \omega_\mathrm{res} }[/math]) of the system dressed by the counter-rotating field is [math]\displaystyle{ \Delta\omega_\mathrm{eff} }[/math] away from our frame of reference, which is rotating at [math]\displaystyle{ -\omega }[/math]
- [math]\displaystyle{ \omega_\mathrm{res} + \omega = \pm\sqrt{\Omega_0^2 +(\omega +\omega_0)^2} }[/math]
and there are two solutions for [math]\displaystyle{ \omega_{res} }[/math]
- [math]\displaystyle{ \omega_\mathrm{res} =\omega_0 \left[ 1 +\frac{1}{4} \left( \frac{\Omega_0}{\omega_0} \right)^2 \right] }[/math]
and
- [math]\displaystyle{ \omega_\mathrm{res} =-\frac{1}{3} \omega_0 \left[ 1 +\frac{3}{4} \left( \frac{\Omega_0}{\omega_0} \right)^2 \right]. }[/math]
The shift from the RWA of the first solution is dominant, and the correction to [math]\displaystyle{ \omega_0 }[/math] is known as the Bloch–Siegert shift:
- [math]\displaystyle{ \delta \omega_\mathrm{B-S} =\frac{1}{4} \frac{\Omega_0^2}{\omega_0} }[/math]
The counter-rotating frequency gives rise to a population oscillation at [math]\displaystyle{ 2\omega }[/math], with amplitude proportional to [math]\displaystyle{ (\Omega/\omega) }[/math], and phase that depends on the phase of the driving field.[1] Such Bloch–Siegert oscillation may become relevant in spin flipping operations at high rate. This effect can be suppressed by using an off-resonant Λ transition.[2]
AC-Stark shift
The AC-Stark shift is a similar shift in the resonance frequency, caused by a non-resonant field of the form [math]\displaystyle{ H_\mathrm{or} = \frac{V_\mathrm{or}}{2} \cos{(\omega_\mathrm{or} t)} }[/math] perturbing the spin. It can be derived using a similar treatment as above, invoking the RWA on the off-resonant field. The resulting AC-Stark shift is: [math]\displaystyle{ \delta \omega_\mathrm{AC} =\frac{1}{2} \frac{\Omega_\mathrm{or}^2}{(\omega_0 - \omega_\mathrm{or})} }[/math], with [math]\displaystyle{ \Omega_{or} = |V_{or}/2\hbar | }[/math].
References
- ↑ Cardoso, George C. (23 June 2005). "In situ detection of the temporal and initial phase of the second harmonic of a microwave field via incoherent fluorescence". Physical Review A 71 (6): 063408. doi:10.1103/PhysRevA.71.063408. Bibcode: 2005PhRvA..71f3408C.
- ↑ Pradhan, Prabhakar (28 March 2009). "Suppression of error in qubit rotations due to Bloch–Siegert oscillation via the use of off-resonant Raman excitation". Journal of Physics B: Atomic, Molecular and Optical Physics 42 (6): 065501. doi:10.1088/0953-4075/42/6/065501. Bibcode: 2009JPhB...42f5501P.
- L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms, Dover Publications, 1987.
Original source: https://en.wikipedia.org/wiki/Bloch–Siegert shift.
Read more |