Physics:Born equation

From HandWiki
Short description: Equation for Gibbs free energy of solvation

The Born equation can be used for estimating the electrostatic component of Gibbs free energy of solvation of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of methods known as continuum solvation methods).

It was derived by Max Born.[1][2]

[math]\displaystyle{ \Delta G =- \frac{N_A z^2 e^2}{8 \pi \varepsilon_0 r_0}\left(1-\frac{1}{\varepsilon_r}\right) }[/math] where:

Derivation

The energy U stored in an electrostatic field distribution is:[math]\displaystyle{ U=\frac{1}{2} \varepsilon_0 \varepsilon_r \int |{\bf{E}}|^2 dV }[/math]Knowing the magnitude of the electric field of an ion in a medium of dielectric constant εr is [math]\displaystyle{ |{\bf{E}}|=\frac{z e}{4 \pi \varepsilon_0 \varepsilon_{r} r^2} }[/math] and the volume element [math]\displaystyle{ dV }[/math] can be expressed as [math]\displaystyle{ dV=4\pi r^2 dr }[/math], the energy [math]\displaystyle{ U }[/math] can be written as: [math]\displaystyle{ U=\frac{1}{2} \varepsilon_0 \varepsilon_r \int_{r_0}^\infty \left(\frac{z e}{4 \pi \varepsilon_0 \varepsilon_r r^2}\right)^2 4\pi r^2 dr=\frac{z^2 e^2}{8\pi \varepsilon_0 \varepsilon_r r_0} }[/math]Thus, the energy of solvation of the ion from gas phase (εr =1) to a medium of dielectric constant εr is:[math]\displaystyle{ \frac{\Delta G}{N_A} = U(\varepsilon_r )- U(\varepsilon_r=1)=- \frac{z^2 e^2}{8 \pi \varepsilon_0 r_0}\left(1-\frac{1}{\varepsilon_r}\right) }[/math]

References

  1. Born, M. (1920-02-01). "Volumen und Hydratationswärme der Ionen" (in de). Zeitschrift für Physik 1 (1): 45–48. doi:10.1007/BF01881023. ISSN 0044-3328. Bibcode1920ZPhy....1...45B. https://doi.org/10.1007/BF01881023. 
  2. Atkins; De Paula (2006). Physical Chemistry (8th ed.). Oxford university press. p. 102. ISBN 0-7167-8759-8. https://archive.org/details/atkinsphysicalch00pwat/page/102. 

External links