Physics:Dreicer field

From HandWiki

The Dreicer field (or Dreicer electric field) is the critical electric field above which electrons in a collisional plasma can be accelerated to become runaway electrons. It was named after Harry Dreicer who derived the expression in 1959[1] and expanded on the concept (i.e. runaway generation) in 1960.[2] The Dreicer field is an important parameter in the study of tokamaks to suppress runaway generation in nuclear fusion.[3][4][5] The Dreicer field is given by[6][7]

[math]\displaystyle{ E_D = \frac{1}{4\pi\epsilon_0^2} \frac{ne^3 \ln\Lambda}{m_ev_{Te}^2} }[/math]

where [math]\displaystyle{ n }[/math] is the electron density, [math]\displaystyle{ e }[/math]is the elementary charge, [math]\displaystyle{ \ln\Lambda }[/math]is the Coulomb logarithm, [math]\displaystyle{ \epsilon_0 }[/math]is the vacuum permittivity, [math]\displaystyle{ m_e }[/math]is the electron mass and [math]\displaystyle{ v_{Te} }[/math]is the electron thermal speed. It was derived by considering the balance between the electric field and the collisional forces acting on a single electron within the plasma.[6][8]

Recent experiments have shown that the electric field required to accelerate electrons is significantly larger than the theoretically calculated Dreicer field.[9][10][11] New models have been proposed to explain the discrepancy.[8][12]

References

  1. Dreicer, H. (1959-07-15). "Electron and Ion Runaway in a Fully Ionized Gas. I". Physical Review 115 (2): 238–249. doi:10.1103/PhysRev.115.238. 
  2. Dreicer, H. (1960-01-15). "Electron and Ion Runaway in a Fully Ionized Gas. II" (in en). Physical Review 117 (2): 329–342. doi:10.1103/PhysRev.117.329. ISSN 0031-899X. 
  3. Plyusnin, V. V.; Riccardo, V; Jaspers, R; Alper, B; Kiptily, V. G.; Mlynar, J; Popovichev, S; Luna, E. de La et al. (2006). "Study of runaway electron generation during major disruptions in JET". Nuclear Fusion 46 (2): 277–284. doi:10.1088/0029-5515/46/2/011. ISSN 0029-5515. http://stacks.iop.org/0029-5515/46/i=2/a=011?key=crossref.15b4ea84f0134c418b10b8235dc88fb3. 
  4. Smith, H. M.; Verwichte, E. (2008-07-01). "Hot tail runaway electron generation in tokamak disruptions". Physics of Plasmas 15 (7): 072502. doi:10.1063/1.2949692. ISSN 1070-664X. 
  5. TEXTOR Team; Lehnen, M.; Bozhenkov, S. A.; Abdullaev, S. S.; Jakubowski, M. W. (2008-06-24). "Suppression of Runaway Electrons by Resonant Magnetic Perturbations in TEXTOR Disruptions". Physical Review Letters 100 (25): 255003. doi:10.1103/PhysRevLett.100.255003. PMID 18643669. http://juser.fz-juelich.de/search?p=id:%22PreJuSER-1541%22. 
  6. 6.0 6.1 Wesson, John; Campbell, D. J. (2004). Tokamaks (3rd ed.). Oxford: Clarendon Press. ISBN 0198509227. OCLC 52324306. 
  7. Connor, J.W.; Hastie, R.J. (1975-06-01). "Relativistic limitations on runaway electrons". Nuclear Fusion 15 (3): 415–424. doi:10.1088/0029-5515/15/3/007. ISSN 0029-5515. Bibcode1975NucFu..15..415C. http://stacks.iop.org/0029-5515/15/i=3/a=007?key=crossref.cda6240c3f58db76a7f052016f084b6b. 
  8. 8.0 8.1 Stahl, A.; Hirvijoki, E.; Decker, J.; Embréus, O.; Fülöp, T. (2015-03-17). "Effective Critical Electric Field for Runaway-Electron Generation". Physical Review Letters 114 (11): 115002. doi:10.1103/physrevlett.114.115002. ISSN 0031-9007. PMID 25839283. 
  9. Martín-Solís, J. R.; Sánchez, R.; Esposito, B. (2010-10-25). "Experimental Observation of Increased Threshold Electric Field for Runaway Generation due to Synchrotron Radiation Losses in the FTU Tokamak". Physical Review Letters 105 (18): 185002. doi:10.1103/PhysRevLett.105.185002. PMID 21231111. 
  10. Paz-Soldan, C.; Eidietis, N. W.; Granetz, R.; Hollmann, E. M.; Moyer, R. A.; Wesley, J. C.; Zhang, J.; Austin, M. E. et al. (2014-02-01). "Growth and decay of runaway electrons above the critical electric field under quiescent conditions". Physics of Plasmas 21 (2): 022514. doi:10.1063/1.4866912. ISSN 1070-664X. 
  11. Granetz, R. S.; Esposito, B.; Kim, J. H.; Koslowski, R.; Lehnen, M.; Martin-Solis, J. R.; Paz-Soldan, C.; Rhee, T. et al. (2014-07-01). "An ITPA joint experiment to study runaway electron generation and suppression". Physics of Plasmas 21 (7): 072506. doi:10.1063/1.4886802. ISSN 1070-664X. http://juser.fz-juelich.de/record/189399. 
  12. Konovalov, S. V.; Aleynikov, P.; Ismailov, R. E. (2016). "Dreicer mechanism of runaway electron generation in presence of high-Z impurities". 43rd EPS Conference on Plasma Physics (European Physical Society). http://ocs.ciemat.es/EPS2016PAP/pdf/P2.022.pdf.