Physics:Einstein's Relativity Results from the Theory of Entropicity(ToE)

From HandWiki

Template:HandWiki

Binet–Obidi Equation and Relativistic Orbital Effects from the Theory of Entropicity (ToE)

Here, we derive Einstein's beautiful and classical results of his marvelous General Theory of Relativity (GToR), the perihelion precession of Mercury and the deflection of starlight, from the Theory of Entropicity(ToE) without any resort to spacetime curvature.

Introduction

The Binet–Obidi Equation is a generalization of the classical Binet equation for central-force motion, incorporating the entropic correction term predicted by the Theory of Entropicity(ToE), as first formulated and developed by John Onimisi Obidi.[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21] This correction arises from the dynamics of the entropic field and yields the same quantitative predictions for Mercury's perihelion precession and the deflection of starlight as General Relativity (GR), but from a fundamentally different physical origin.

1. Classical Binet Equation

For a particle of mass [math]\displaystyle{ m }[/math] in a central force [math]\displaystyle{ F(r) }[/math], the Binet equation is:

[math]\displaystyle{ \frac{d^2 u}{d\theta^2} + u = -\frac{F(1/u)}{m h^2 u^2} }[/math]

where:

  • [math]\displaystyle{ u = 1/r }[/math]
  • [math]\displaystyle{ h = r^2 \dot{\theta} }[/math] is the specific angular momentum.

For Newtonian gravity: [math]\displaystyle{ F(r) = -\frac{GMm}{r^2} \quad\Rightarrow\quad \frac{d^2 u}{d\theta^2} + u = \frac{GM}{h^2} }[/math]

which yields closed Keplerian ellipses with no precession.

2. Entropicity Correction

From Obidi's Theory of Entropicity(ToE), the gravitational force is modified by an entropy-gradient term:

[math]\displaystyle{ F_{\text{ToE}}(r) = -\frac{GMm}{r^2} - \frac{\beta\,GMm}{c^2\,r^3} }[/math]

where:

  • The [math]\displaystyle{ 1/r^3 }[/math] term is the Obidi entropic correction.
  • [math]\displaystyle{ \beta }[/math] is a dimensionless constant determined by observation.

3. Binet–Obidi Equation

Substituting [math]\displaystyle{ F_{\text{ToE}} }[/math] into the above Binet equation, we obtain the following equation:

[math]\displaystyle{ \frac{d^2 u}{d\theta^2} + u = \frac{GM}{h^2} + \frac{\beta\,GM}{c^2\,h^2} u }[/math]

Rewriting the above, we obtain:

[math]\displaystyle{ \frac{d^2 u}{d\theta^2} + \left(1 - \frac{\beta\,GM}{c^2\,h^2}\right) u = \frac{GM}{h^2} }[/math]

This is the Binet–Obidi Equation.

4. Solution and Perihelion Precession

The general solution is:

[math]\displaystyle{ u(\theta) = \frac{GM}{h^2} \left[ 1 + e \cos\left( \sqrt{1 - \frac{\beta\,GM}{c^2\,h^2}}\,\theta \right) \right] }[/math]

For small [math]\displaystyle{ \epsilon = \frac{\beta\,GM}{2c^2\,h^2} \ll 1 }[/math], the angular frequency is: [math]\displaystyle{ \omega \approx 1 - \epsilon }[/math]

After one revolution we obtain:

([math]\displaystyle{ 2\pi }[/math] in [math]\displaystyle{ \theta }[/math]),

so the perihelion advances by:

[math]\displaystyle{ \Delta\theta \approx \frac{\pi\beta\,GM}{c^2 a (1 - e^2)} }[/math]

Using Mercury's observed precession:

([math]\displaystyle{ 43'' }[/math] per century) fixes [math]\displaystyle{ \beta = 3 }[/math],

thus giving:

[math]\displaystyle{ \Delta\theta_{\text{ToE}} = \frac{6\pi GM}{c^2 a (1 - e^2)} }[/math],

which is clinically and classically identical to the GR result.

5. Light Deflection

For light, [math]\displaystyle{ m \to 0 }[/math] but [math]\displaystyle{ h \approx b c }[/math] (impact parameter [math]\displaystyle{ b }[/math]), we therefore have:

[math]\displaystyle{ \frac{d^2 u}{d\theta^2} + u = \frac{\beta\,GM}{c^2 b^2} u }[/math]

Solving perturbatively for [math]\displaystyle{ \beta = 3 }[/math] yields:

[math]\displaystyle{ \delta \phi \approx \frac{4GM}{c^2 b}, }[/math]

thus, once again, matching the GR prediction for starlight grazing the Sun.

6. Significance of Obidi's Contribution in his Theory of Entropicity(ToE)

While GR attributes the [math]\displaystyle{ 1/r^3 }[/math] term to spacetime curvature, the ToE derives it from entropic field dynamics. The Binet–Obidi Equation thus provides a unifying mathematical form for relativistic orbital effects, but with a thermodynamic–informational physical origin.

See Also

References



  1. Physics:Einstein's Relativity from Obidi's Theory of Entropicity(ToE). (2025, August 30). HandWiki, . Retrieved 12:19, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Einstein%27s_Relativity_from_Obidi%27s_Theory_of_Entropicity(ToE)&oldid=3742784
  2. Physics:Time Dilation, Length Contraction in the Theory of Entropicity (ToE). (2025, August 30). HandWiki, . Retrieved 10:01, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Time_Dilation,_Length_Contraction_in_the_Theory_of_Entropicity_(ToE)&oldid=3742771
  3. Physics:Insights from the No-Rush Theorem in the Theory of Entropicity(ToE). (2025, August 1). HandWiki, . Retrieved 09:43, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Insights_from_the_No-Rush_Theorem_in_the_Theory_of_Entropicity(ToE)&oldid=3741840
  4. Physics:The Cumulative Delay Principle(CDP) of the Theory of Entropicity(ToE). (2025, August 11). HandWiki, . Retrieved 09:40, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:The_Cumulative_Delay_Principle(CDP)_of_the_Theory_of_Entropicity(ToE)&oldid=3742101
  5. Physics:Theory of Entropicity(ToE), Time Quantization and the Laws of Nature. (2025, August 1). HandWiki, . Retrieved 09:34, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Theory_of_Entropicity(ToE),_Time_Quantization_and_the_Laws_of_Nature&oldid=3741802
  6. Book:Conceptual and Mathematical Treatise on Theory of Entropicity(ToE). (2025, August 30). HandWiki, . Retrieved 09:31, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Book:Conceptual_and_Mathematical_Treatise_on_Theory_of_Entropicity(ToE)&oldid=3742769
  7. Physics:Gravity from Newton and Einstein in the Theory of Entropicity(ToE). (2025, August 7). HandWiki, . Retrieved 09:19, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Gravity_from_Newton_and_Einstein_in_the_Theory_of_Entropicity(ToE)&oldid=3742006
  8. Physics:Randomness and Determinism Unified in the Theory of Entropicity(ToE). (2025, August 13). HandWiki, . Retrieved 09:17, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Randomness_and_Determinism_Unified_in_the_Theory_of_Entropicity(ToE)&oldid=3742233
  9. Physics:Relativity from Fundamental Postulate of Theory of Entropicity(ToE). (2025, August 30). HandWiki, . Retrieved 09:13, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Relativity_from_Fundamental_Postulate_of_Theory_of_Entropicity(ToE)&oldid=3742766
  10. Physics:Artificial Intelligence Formulated by the Theory of Entropicity(ToE). (2025, August 27). HandWiki, . Retrieved 03:59, August 27, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Artificial_Intelligence_Formulated_by_the_Theory_of_Entropicity(ToE)&oldid=3742591
  11. Physics:Curved Spacetime Derived from Obidi's Theory of Entropicity(ToE). (2025, August 29). HandWiki, . Retrieved 09:01, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Curved_Spacetime_Derived_from_Obidi%27s_Theory_of_Entropicity(ToE)&oldid=3742730
  12. Physics:Information and Energy Redistribution in Theory of Entropicity(ToE). (2025, August 30). HandWiki, . Retrieved 09:05, August 30, 2025 from https://handwiki.org/wiki/index.php?title=Physics:Information_and_Energy_Redistribution_in_Theory_of_Entropicity(ToE)&oldid=3742765
  13. Obidi, John Onimisi (2025). Master Equation of the Theory of Entropicity (ToE). Encyclopedia. https://encyclopedia.pub/entry/58596
  14. Obidi, John Onimisi. Corrections to the Classical Shapiro Time Delay in General Relativity (GR) from the Entropic Force-Field Hypothesis (EFFH). Cambridge University. (11 March 2025). https://doi.org/10.33774/coe-2025-v7m6c
  15. Obidi, John Onimisi. How the Generalized Entropic Expansion Equation (GEEE) Describes the Deceleration and Acceleration of the Universe in the Absence of Dark Energy. Cambridge University. (12 March 2025). https://doi.org/10.33774/coe-2025-6d843
  16. Obidi, John Onimisi. The Theory of Entropicity (ToE): An Entropy-Driven Derivation of Mercury’s Perihelion Precession Beyond Einstein’s Curved Spacetime in General Relativity (GR). Cambridge University. (16 March 2025). https://doi.org/10.33774/coe-2025-g55m9
  17. Obidi, John Onimisi. The Theory of Entropicity (ToE) Validates Einstein’s General Relativity (GR) Prediction for Solar Starlight Deflection via an Entropic Coupling Constant η. Cambridge University. (23 March 2025). https://doi.org/10.33774/coe-2025-1cs81
  18. Obidi, John Onimisi (25 March 2025). "Attosecond Constraints on Quantum Entanglement Formation as Empirical Evidence for the Theory of Entropicity (ToE)". Cambridge University. https://doi.org/10.33774/coe-2025-30swc
  19. Obidi, John Onimisi. Einstein and Bohr Finally Reconciled on Quantum Theory: The Theory of Entropicity (ToE) as the Unifying Resolution to the Problem of Quantum Measurement and Wave Function Collapse. Cambridge University. (14 April 2025). https://doi.org/10.33774/coe-2025-vrfrx
  20. Obidi, John Onimisi . "On the Discovery of New Laws of Conservation and Uncertainty, Probability and CPT-Theorem Symmetry-Breaking in the Standard Model of Particle Physics: More Revolutionary Insights from the Theory of Entropicity (ToE)". Cambridge University. (14 June 2025). https://doi.org/10.33774/coe-2025-n4n45
  21. Obidi, John Onimisi. A Critical Review of the Theory of Entropicity (ToE) on Original Contributions, Conceptual Innovations, and Pathways towards Enhanced Mathematical Rigor: An Addendum to the Discovery of New Laws of Conservation and Uncertainty. Cambridge University.(2025-06-30). https://doi.org/10.33774/coe-2025-hmk6n